
%1%10 1~'6 %\S IS W 1 .S% Il 1

ADA

is? h h ~ IE67hE0hhhh0hhEI

z
0

Technical Document 1166
October 1987

Performance of Data
0Compression Codes in

Channels with Errors

SAIC Comsystems Division

9STAt

J A.

Approved for public release; The views and conclusions contained in
distribution is unlimited, this report are those of the authors and

should not be interpreted as representing
the official policies, either expressed or
implied, of the Naval Ocean Systems
Center or the U.S. Government.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5O00

E. G. SCHWEIZER. CAPT, USN R. M. HILLYER
C'jpandsr Technfci Direto

ADMINISTRATIVE INFORMATION

This report was prepared by SAIC Comsystems Division, under contract
N66001-85-D-0029. for Code 83 of the Naval Ocean Systems Center.

Released under authority of
W.R. Dishong. Head
Submarine Broadcast Systems Division

UNCLASSIFIED
SECUMTY CLASS CATION Of HI PA

REPORT DOCUMENTATION PAGE
I a REPORT SECURITY CLASSIFICATIONlbEShCIEAMG

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIEUTION/AVA-ASBITY OF REPORT

2b DECASIFCTON DONRDN SCEDL Approved for public release; distribution is unlimited.

4 PERFORMING 3RAMZNATION REPORT N4UMBER(S 5 MOWITORING ORGANIATION~ REPORT NUINSERS,

NOSC TD 116"

6& NAME OF PERFORMING ORGANIZATION 60B OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

SAIC ______ __ Naval 0ca Systems Center
6c ADDRESS IC,, Sm. -' zip Cof, 7b ADDRESS ICNY StN. WKIdZIP Cdw.

Comaystems Division
2815 Camino Del Rio South
San Diego, CA 92106 San Diego, CA 92152-5000

go NAME OF FUNDING SPONSORING ORGANIZATION j 5 OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Space and Naval Warfare /'I ACtw

System Command j_ _______N66001-6-D-0029

Sc ADDRESS 'Cow Sim* w ZPcade, 10 SOURCE OF FUNDING NUMBERS

PROGRAM EL.EMENT NO PROJECT NO0 TASK NO AGENCY
ACCESS" NO

Washington, DC 20363-5100 33131N CM51 JCCM 5100

II 1TTL INV&%* So-Kve CMftSdww

Performance of Data Compression Code" in Channels with Errors

12 PERSONAL AUTHMOS

1in. IW F EOR 3 TM (VE Jan a? 14 DATE OF REPORT fyew Atomb Dow ~ IS 6PAGE COUNTF13& TYEOPRPR ROM ____ TO____ October 19"7 91
IS SUPPLEMENTARY NOTATION

17 COSATJ CODES 1S SUBJECT TERMS IComN.,, on rr'Ws 4 nqiewy &nd mI.Mdv by b/ocit flrwmo

P161. GROUP SUB-GROUPI commna-free codes
I block codes

19 ABSTRACT IC"~,~ w Pewso d noctuwy ww d~ iwd b Mic n..INI

Huffem codes, comma-free codes, and block codes with shift indicators ane important candidate message compression
codes for improving the efficiency of communication systems. This study was undertaken to determine If these codes could
be used to increase the thruput of the fixed very low frequency (FVLF) communication system. This application involves
the use of compression codes in a channel with errors.

DD FO M17 ,8-A 63 A"R EDITION MAY66E USED UNTIL EXHAUSTED UNCLASSIFIED
I ~~~~~~~~ALL OTHER EDITIONS ARE OBSOLETE _______________

SECufRITv CLASSIFIATION OF THIS PAGE

maCcnnT ctnnPcnTo Of twis PAGE (Nb DOe 0081m4

Do FORW 1473,84 JAN %CASI1

SfcuRITV CL AflIFICAtIOu OF TISg PAG(hm S f One geg

TABLE OF CONTENTS

EXECUTIVE SUMMARY

Introduction

Background o I
Results o 2

E Cindin OF CO MP ES IO.C Do . . -o........... o.... vi

Conclusions ... ode vii
Recoumendations vii

ICOU 1

APPROACH OMRESSI 2

DESCRIPTrION OF.DATACOPRESSIONCODES............................ 3

Generalized Baudot Codes 4..............
Huffman Codes 5
Comma-free Codes 14

DATA COMPRESSION o.. o * o 0 21

Generalized Baudot Codes o. o .. o..... . .. o 26

Comma-free Codes o o oo o . 32

Surveying Comma-Free Codes o....................... 32
Choice of a Comma-free Code for a 58-character Set 38

COMPRESSIvN CODE PERFORMANCE IN A CHANNEL WITH ERRORS 42

Generalized Baudot Codes 44
Huffman Codes o......................... 44

Introduction o............. 44

Description of Simulation Software 44
Simulation Results for a 95-character Set 45
Simulation Results for a 58-character Set 47

Coma-free Codes 63

Comma-free Codes Constructed in Two Steps Using
Length One Words o o 63

Comma-free Codes Constructed Using Other Than Length
One Words 75

SUMMARY 77

i

LIST OF TABLES

E-1. Performance Comparison of Best Data Compression Codes v

1. Error Recovery Test using a Five Character Alphabet.........12
2. Summary of Narrative Files (IBM PC MASS-11 Files)...........23
3. Character Probabilities of Occurrence for

F our Narrative Files...................................... 24
4. Probabilities of Character Occurrence for any

Character in 15 Character Subsets of the Four
Narrative Files 27

5. Huffman Code Word Lengths for Four Narrative Files..........29
6. Average Number of Bits-per-Character for HuffEman Codes

and Different Training Files 31
7. Partial Survey of the Distributions of Code Word

Lengths for Codes Constructed using Prefixes and
Suffixes of Lengths 1,1,2 and 3 in the First Three
Stages of Construction 34

8. Partial Survey of the Distributi-ons of Code Word
Lengths for Codes Constructed using Prefixes and
Suffixes of Lengths 1,1 and 3 in the First Three
Stages of Construction 35

9. Partial Survey of the Distributions of Code Word
Lengths for Codes Constructed using Prefixes and
Suffixes of Lengths 1,1,2 and 4 in the First Three
Stages of Construction *................... 36

10. Partial Survey of the Distributions of Code Word
Lengths for Codes Constructed using Prefixes and
Suffixes of Lengths 1,1 and 4 in thie First Three
Stages of Construction .. *..........* 37

11. Huffmian and Comma-free Code Word Lengths for Four
Narrative Files 41

12. Comparison of Bits-per-Character Values of Huffman
and Comma-Free Codes 43

13. Huf fman Code Words for Narrative File IV which Provided
the Best Performance in a Channel with Errors 64

14. Probabilities of Erroneous Comma Insertions or Deletions
due to Bit Errors for the Suffix-Prefix Comma-Free

15. Probabilities of Erroneous Comma Insertions due to
Bit Errors for the Suffix-Suffix Comma-Free Code 71

LIST OF FIGURES

1. Two Examples of Huffman Coding.............................6
2. Huffman Codes Include Block Coding for Equal Probability

Symbkols (8 Symbol Example)................................. 8
3. Example Showing Data Compression of a Huffman Code

Relative to aBlock Code................................... 9
4. Examples of Error Propagation for Two Huffman Codes

Providing the Same Compression......................... 10

ii

LIST OF FIGURES (Cont.)

5. Huffman Code Error Recovery Test using 5-Character
Alphabet 13

6. An Example of the Construction of a Comma-Free Code5..........1
7. An Example of the Comma-Free Algorithm to Insert "Commas"

in an Error-Free Channel 16
8. An Example of the Comma-Free Algorithm to Insert "Commas"

in a Channel with Errors 18
9. Impact of Bit Errors on Comma Placement for Suffix-Prefix

Comma-Free Code 20
10. Impact of Bit Errors on Comma Placement for Suffix-Suffix

Comma-Free Code .. 22
11. Wr-, % Lengths for Selected Two- and Three-Step

auffix-Prefix Comma-Free Codes 39
12. Word Lengths for Selected Two- and Four-Step

Suffix-Prefix Comma-Free Codes 40
13. Decoding Error Statistics Resulting from Randomly

Induced Bit Errors for a Variety of Huffman Codes 46
14. Average Number of Decoded Characters per Bit Error for

Four Huffman Codes 48
15. Distribution of the Average Ratio of Input Symbol Errors

to Bit Errors for a Large Number of Equally Efficient
Huffman Codes 49

16. Character Decoding Errors for Experiments Using
Narrative I as a Training File 51

17. Character Decoding Errors for Experiments Using
Narrative II as a Training File 52

18. Character Decoding Errors for Experiments Using
Narrative III as a Training File 53

19. Character Decoding Errors for Experiments Using
Narrative IV as a Training File 54

20. Distribution of Output Errors for Best 58-Character
Huffman Code Using Narrative File I as Training File 55

21. Distribution of Output Errors for Worst 58-Character
Huffman Code Using Narrative File I as Training File 56

22. Distribution of Output Errors for Best 58-Character
Huffman Code Using Narrative File II as Training File 57

23. Distribution of Output Errors for Worst 58-Character
Huffman Code Using Narrative File II as Training File 58

24. Distribution of Output Errors for Best 58-Character
Huffman Code Using Narrative File III as Training File... 59

25. Distribution of Output Errors for Worst 58-Character
Huffman Code Using Narrative File III as Training File... 60

26. Distribution of Output Errors for Best 58-Character
Huffman Code Using Narrative File IV as Training File 61

27. Distribution of Output Errors for Worst 58-Character
Huffman Code Using Narrative File IV as Training File 62

iii

EXECUTIVE SUMMARY

Introduction

Huffman codes, comma-free codes, and block codes with shift
indicators are important candidate message compression codes for
improving the efficiency of communication systems. Data
compression codes have been used for communications in error-free
channels. This study was undertaken to determine if these codes
could be utilized to increase the thruput of the fixed very low
frequency (FVLF) communication system. This application involves
the use of compression codes in a channel with errors.

Background

The investigation of data compression codes was constrained
to the investigation of information carrying bits and to
compression based on the probabilities of occurrences of
characters. The data compression capabilities of the candidate
codes were investigated by estimating the average number of bits-
per-character for the different codes; the performance of the
code in a channel with errors was investigated in terms of the
average number of characters decoded in error per bit error and
the average number of characters output from the decoder in error
per bit error. Generally speaking, as the number of bits-per-
character decreases (that is, as data compression increases), the
number of characters decoded in error per bit error and the
number of characters output from the decoder in error per bit
both increase.

Results

The performance of Huffman codes, suffix/prefix comma-free
codes, and some variants of Baudot codes were obtained for the
encoding of narrative files of an IBM PC for a 58-character set
in lieu of processing of Navy messages (which were not available
in an IBM PC compatible format). These results should be
indicative of the results which could be obtained for the
narrative portions of Navy messages using the 58-character
(Baudot) set. Huffman code performance results in channels with
errors were obtained through simulation on the IBM PC; results
for the other codes were obtainied analytically.

The number of degrees of freedom in the Huffman code
construction process and the complexity of the impacts of bit
errors on character synchronization precluded analytical
treatment of Huffman code performance in a channel with errors.
The severe problems uncovered by the simulation of Huffman codes
in these channels led to the consideration of alternative data
compression codes less sensitive to bit errors. The error
mechanisms for these alternative codes are direct enough to allow
analytical treatment.

Table E-1 summarizes the results of this investigation.
The comma-free code statistics are for the construction leading

iv

TABLE E-1. PERFORMANCE COMPARISON OF BEST
DATA COMPRESSION CODES

COMPRESSION BITS PER DECODE CHAR ERR OUTPUT CHAR ERR
CODE CHARACTER PER BIT ERROR PER BIT ERROR

1-shift Baudot 5.1 1.0 1.0

3-shift Baudot 4.5 1.0 1.1

Comma-free 4.0 1.5 1.5

Huffman 3.9 2.2 2.4 *

* A single bit error led to a maximum of 14 output
characters for this code.

v

to a comma-free code most nearly matching the Huffman code in
compression. The Huffman code results are for the code
constructed with the lowest number of decoded character errors
per bit error. The summary results have been rounded to a single
significant place to remove the small dependency of the values
obtained on the particular narrative used as a basis for
estimating character probabilities of occurrence.

Findings

The main findings of this analysis were:

(1) The normal Baudot code uses a single shift key to
reduce the number of bits required to transmit information from 6
to about 5.06. Generalizations of this construction can further
reduce the average number of bits required to around 4.5 bits-
per-character while maintaining a basic block structure.

(2) A suffix/prefix comma-free code can be constructed
which provides nearly the same data compression as a Huffman code
provided that the probabilities of the occurrence of the
different characters decrease in a regular manner. For the
character set and probabilities of occurrence of the characters
of the set used in the Huffman simulation, the penalty varied
from a low of .05 bit per character to a high of .18 bit per
character for the four narrative files investigated for using a
suffix/prefix comma-free code instead of a Huffman code.

(3) A single bit error can lead to very long sequences of
decoding errors when Huffman codes are used. Sequences of output
characters in error exceeding 90 characters in length were
observed.

(4) It was found that operator interactive processing of the
output narrative file could be used to correct about three-
quarters of the Huffman decoder errors. Not all the errors could
be detected by the operator, given only the output text with
errors; some detected errors could not be corrected if multiple
bit errors had occurred in the same code word.

(5) In a channel with errors, the performance of the
suffix/prefix comma-free codes, which provided the best
compression, only depends on whether the code is constructed
using a suffix and a prefix or whether it is constructed using
two suffixes or two prefixes. The codes in the two categories
provide very similar performance in a channel with errors.

(6) A single bit error can lead to at most two character
errors for the above prefix/suffix codes. This result follows
from the fact that a single bit error can lead to at most one
comma being inserted incorrectly by the suffix/prefix comma
insertion algorithm for these codes.

vi

(7) A large proportion of the compression gains achievable
using Huffman and comma-free codes is provided by the coding of
the frequently occurring blank by a short code word.

Conclusions

The following conclusions were drawn as a result of the
investigation:

(1) Comma-free codes significantly outperform Huffman codes
in an error channel. They provide nearly the same compression
and have significantly fever decoded or output character errors
than Huffman codes.

(2) A generalized Baudot code offers modest compression
gains (13%) with only one decoded or output character error per
bit error.

(3) Comma-free codes probably could be designed with some
error correction incorporated into the encoding of end-of-line
characters to provide moderate compression gains (around 30%).

(4) more significant compression gains should be achievable
by basing either Huffman or comma-free code word assignments to
characters on the character and on the one or more characters
immediately preceding it in the message.

Recommendations

We make the following recommendations.

(1) The analytical results obtained for the suffix-prefix
and suffix-suffix comma-free codes in a channel with errors
should be extended to more general comma-free codes.

(2) The most promising codes, i.e., the comma-free codes
and the generalized Baudot codes, should be exercised on real
Navy messages to verify that the findings reported herein apply
to Navy messages.

(3) The most promising codes should be identified to encode
characters using their conditional probabilities of occurrence
(conditioned on receipt of the one or two previous characters).
The techniques developed in this report can be used to identify

* the best codes for this application.

(4) Error correcting techniques, such as operator
* interaction or soft-decision logic, should be investigated for

use with comma-free codes. Until this has been done, it is
difficult to select among the available comma-free codes giving
the same compression.

vii

INTRODUCTION

It is desirable to increase the channel capacity of the
submarine broadcast system. One technique which has been
suggested for doing this is to more efficiently encode the
narrative portions of messages through use of data compression
codes. A data compression code assigns short binary code words
to symbols with a high frequency of occurrence, and long code
words to symbols with a low frequency of occurrence.
Difficulties arise when data compression codes are used in
channels with errors, because one bit error can lead to multiple
character errors due to temporary loss of character
synchronization.

This report investigates the behavior of Huffman, Comma-
free, and generalized Baudot codes for alphabets of 58 characters
in channels with errors. Some preliminary results are provided
on the feasibility of correcting errors in narrative portions of
messages by using narrative context.

SCOPE

Data compression codes have been used in error-free
channels, but to our knowledge they have not been used in
channels with errors. Consequently, their performance in
channels with errors has not been established. This paper
represents an initial study of the behavior of data compression
codes suitable for encoding the 58-character Baudot code used for
Navy messages in a channel with errors.

Results are presented for an alphabet derived from the 95
character set of the IBM PC and for processing narrative files
stored on its hard disk. These files were edited to use only
capital letters and certain seldom used symbols were deleted,
namely " [, 1, II, 1,1", to obtain an alphabet the same size as
that required for encoding the Baudot dictionary. The decision
to use the reduced IBM PC character set and available document
files was made so that results could be obtained without the
development of a Navy message data base, which was not available
in IBM PC compatible format when this analysis was undertaken.

The analysis is complicated by the fact that the error
properties of both Huffman and error-free codes depend on the
specific choices of bits and code words, respectively, used to
construct the codes for a particular application. This means
that codes exist which provide the same data compression gains
with differing error properties. The main thrust of this paper
is to identify the Huffman codes and the comma-free codes giving
the best performance in a channel with errors and compare their
performance with that of generalized Baudot codes. This involves
characterizing the relationships between character errors and bit
errors for the codes.

An additional complication arises in the analysis of comma-
free codes: the construction process used does not depend
explicitly on the probabilities of occurrence of the characters
to be encoded and therefore a given code may not be well matched
to the statistics of the character set. An approach is presented
which allows the determination of the comma-free code which gives
the best data compression, which can be constructed using the
procedure developed by R. A. Scholtz. This procedure was used to
select the comma-free code which gives the best data compression
for the 58-character set used for the Huffman simulations.

APPROACH

Huffman codes are known to provide the best data compression
possible for variable length codes. This property is ensured by
the code construction process itself which is based directly on
the probabilities of occurrences of the characters to be encoded.

The comma-free codes analyzed in this report are known as
suffix/prefix codes and are constructed using a sequential
procedure found by R. A. Scholtz. This procedure does not
utilize probabilities of occurrence to guide the construction
process. It was necessary for us to develop an approach to match
the word lengths of available prefix/suffix codes to the
character probabilities of occurrence to provide comparable data
compression to that automatically provided by the Huffman codes.

Even after specifying the distribution of word lengths of
Huffman or comma-free codes, there are degrees of freedom in the
construction process. It was discovered that the error
properties of the codes depended on the choices made in the
construction process. This report has been structured to reveal
these dependencies and to provide a technique for the selection
of the compression codes providing the best performance in a
channel with errors.

The insights provided by the investigation of Huffman codes
and comma-free codes led to the identification of certain natural
extensions of the presently used Baudot codes. A comparison of
the performance of these codes with those of Huffman and comma-
free codes provid~es a performance gauge against which the latter
codes can be assessed.

The Huffman construction process has a great number of
degrees of freedom. The impact of bit errors on character
synchronization and character errors is very context-dependent;
therefore, an analytical study of the dependency of error
statistics on the Huffman construction process could not be
performed. A simulation program was written and exercised for
many different Huffman codes by altering the specific choices in
the Huffman construction process for a fixed character set and
fixed probabilities of occurrence for the characters in the
character set. The best compression code found in this manner
was then further exercised to provide baseline data compression
and statistical error properties for Huffman codes.

2

Unlike the Huffman code, the number of degrees of freedom in
the comma-free construction process depends on the number of
sequential steps and not on the character set size. The
performance of codes constructed in a few steps can be
established analytically. Then we found a very surprising thing,
the comma-free code which best matches the compression
performance of the Huffman codes for the narrative files
processed only involved a simnle two-step construction. For two-
step constructions, the available degrees of freedom for comma-
free codes only leads to two code sets with differing error
statistics. For these codes the impact of bit errors on both the
algorithm which identifies code word (the comma insertion
algorithm) and the character decoding process is characterized in
terms of the bit within a code word in error.

The remainder of the report is broken into three major
sections and a short summary section.

The first major section provides descriptions of the
construction processes for generalized Baudot, Huffman, and
comma-free codes. Examples of Huffman and comma-free codes are
presented to illustrate the dependency of the performance of the
codes in a channel with errors on the code construction process.
This section provides background and motivation for the remaining
sections of the report.

The second major section establishes the data compression
which is to be expected for generalized Baudot codes, Huffman
codes, and comma-free codes used to encode narrative files based
only on estimated probabilities of occurrence of the characters
in the narrative files. A symbol set consisting of 58 characters
was utilized for this work to best simulate the 58 Baudot
character set in use for Navy messages.

The third major section describes the performance of
generalized Baudot, Huffman and comma-free codes 'in a channel
with errors.

In the last section, the best codes found are discussed and
recommendations submitted.

DESCRIPTION OF DATA COMPRESSION CODES

This section of the report contains three subsections. The
first subsection describes a family of compression codes which
have a structure very similar to that of the presently used
Baudot code, We call these codes generalized Baudot codes. The
second and third subsections describe Huffman and comma-free
codes, respectively, with emphasis on the description of the
construction processes for the codes and their impact on the
performance of the codes in channels with errors.

3

Generalized Baudot Codes

The Navy Baudot code now being used can be viewed as
consisting of two kinds of characters: information carrying
characters and shift characters. Receipt of a shift character
code word changes the decoding of the next code word--the receipt
of the shift character by itself does not increase the
information passed to the receiver.

The existing Baudot alphabet consists of 57 information
characters and one shift character. If a simple block code was
used 6 bits would be required. However, if a 5 bit code is used
instead, and one of the 32 code words is used as a shift
character, 31 information characters can be transmitted using 5
bits and the remaining 26 information characters can be
transmitted by using the 5 bit code word reserved for a shift
character followed by a 5 bit code word. In effect, the
remaining 26 information characters are transmitted using 10
bits.

The shift character can be implemented as either a one-
character shift or as a toggle shift. we discuss codes using the
shift character as a one-character shift. This is the case
amendable to analysis in terms of character probabilities of
occurrence.

A simple example suffices to indicate the compression
provided by the use of shift characters. Suppose we wanted to
encode six characters: a,b,c,d,e, and f, and that the probability
of occurrence of a,b, or c was .75 and of the remaining
characters .25. If the six characters were encoded with a block
code then 3 bits would be required per character. Suppose that
"001 was used to transmit "a", "01" for "b", "10" for "c", and
"110 a shift character. Then "1100" could be used to transmit
"d", "1101" to transmit "e", and "1110" to transmit "f". The
average number of bits needed to transmit a character using this
code is given by (.75)(2) + (.25)(4) - 2 + (.25)2 - 2.5 bits-per-
character.

More than one shift character could be used at each stage
and more than one shift in succession leading to a whole family
of different Baudot-like codes, which we call generalized Baudot
codes. For example, suppose again that we are building a code
using blocks of two characters, We could reserve two of the 2-
bit code words for shift characters. Then we would have two 2-
bit code words, and eight 4-bit code words available for encoding
information characters. We could use some of the 4-bit code
words as shift characters to generate 6-bit code words, and so
on.

The data compression provided by any code is determined by
the distribution of code word lengths in the code. A generalized
Baudot code is specified by its basic code length and the number
of characters used as shift characters for each multiple of the

4

block length. The generalized Baudot codes of most interest for

Navy messages use code lengths which are multiples of 3, 4, or 5.

Huffman Codes

Using only the probabilities of a set of characters being
transmitted, Huffman provided an organized technique for
constructing efficient codes. Huffman codes use the minimum
number of bits on the average to transmit characters from the
set. The procedure for constructing a Huffman code is
illustrated in the following example [reference 1].

Suppose that we wish to code five characters: a, b, c, d,
and e with the probabilities 0.125, 0.0625, 0.25, 0.0625, and
0.5, respectively. For this example, which is illustrated in
figure 1, the Huffman procedure first involves three regroupings
of five characters.

Grouped characters are indicated by (b,d), (a,b,d), and
(c,a,b,d) along the top of figure 1. At each stage in this first
step, the two characters or group of characters with the lowest
probabilities are grouped. A group of characters is assigned the
probability obtained by summing the probabilities of the
characters in the group.

The Huffman code is constructed based on the characters
which have been grouped at each stage by proceeding from right to
left. Two of the many possible codes which can be assigned to
the original character set are illustrated in figure 1.

We discuss the construction of Code A first. Step 1:
assign "0" to the most likely character "e" and "1" to the
character set (c,a,b,d). These bits are the first bit in the
code words assigned to the characters. The character "e" is
distinguished from the characters "cw, "a", "b", and "d" by the
fact that its code begins with "0" and their codes begin with
"1". Step 2: no bit is assigned to *e", and a second bit is
assigned to the remaining characters. This bit is chosen to
distinguish "c" from "a", "b", and "d"--"0" is shown assigned to
"c" and "1" assigned to the other characters. Step 3: no
additional bits are assigned to "e" and "c" and additional bits
are assigned to distinguish "a" from "b" and "d". Step 4: no
bits are assigned to "e", "c", and "a" and bits are assigned to
distinguish "b" and "d".

Code B, also shown in figure 1, differs from code A in that
at step 1, the character "e" is assigned "I" and the characters
"c", "a", "b", and "d" begin with "0". The remaining steps are
the same. Note, that "0" and "1" can be assigned in either way
at each step, leading to the construction of 16 different codes
for the example shown in figure 1.

The example in figure 1 is very regular in that no
reordering is necessary during the grouping of characters at the

5

C-,)

m1c

LL u- L.

91 LJ cJ
m- UC

CD C

LD~CC'p3
LO U,) w Lii

U') c LO toD CDC

OU CD C)0 AUM .0

different stages of the construction process. It is worthwhile
to note that the Huffman coding procedure can lead to block
coding when all of the character probabilities are the same.

For example, consider the case of eight characters:
a,b,c,d,e,f,g, and h, each having a probability of 0.125. Figure
2 illustrates a Huffman construction process leading to a block
code for this case. Note, the characters are listed in the
natural alphabet order. The first step leads to grouping g and
h, the next step to grouping e and f, the next to grouping c and
d, and the fourth step to grouping a and b. Each group is

* assigned a probability of 0.25. The next two steps leads to
grouping ef,g, and h, and to grouping a,b,c, and d. Each of
these groups is assigned a probability of 0.5.

In general, the Huffman code construction process for
characters with differing probabilities of occurrence leads to a
code with some characters having code words of the same length
and other characters having code words of differing lengths.

Figure 3 illustrates the data compression achievable from
either code A or Code B (as well as any of the other codes
constructable by the Huffman process) described in figure 1. The
gain is gauged by comparing the expected average number of bits
to transmit a character for the Huffman code with a fixed length
code. The average code word length (L) for the example Huffman
code is given by:

L - 0.125(3) + 0.0625(4) + 0.25(2) + 0.0625(4) + 0.5(1)

L - 1.875

The Huffman code has the smallest average code word length.
However, it has variance (V):

2 2 2
V - 0.125(3 - 1.875) + 0.0625(4 -1.875) + 0.25(2 - 1.875)

2 2
+ 0.0625(4 - 1.875) + 0.5(1l 1.875)

Z 1.109375

By comparison, Block Coding, which assigns codes of equal length
to each symbol, would have produced an average length of 3 with
zero variance.

The following examples show how one bit error in Huffman
coding can cause errors in more than one character when decoding;
extra characters may be introduced or some characters may be
dropped. In each case, the first bit of the sequence was
changed. The surprising dependency of character errors on the
choices made in the Huffman code construction process motivated
this study. This phenomenon is illustrated in figure 4.

7

C=)

C-

~-a LUJ

N C-
I-

-0 -0 4-C CD
-% -%: 1 1 1 1)

v N CD

C)c~

-,c _ .) L

Cw =LL-

CC.

160~ --

I-,j

'4-

x U') LO In r%% r% -

a3 >- r- to In fl- 0D LO P. m 0cC
n n m cu mu co O r - m C=)

. I =r uc L ur

-4-

0 mr

1=
(D (0

w =o

C-,-

LA- -D L-

LALU

cc =D

z 3z

c C) CD

UU WMC

-~~~C C- - 4-N j

- - m

C) C C) -c-,

CD -0 D C-
LLJ CL

S" -F 0 v wW "

.4a.,
CD-

Figure 4 shows the impact of introducing a single bit error
into the code word assigned "a" for Code A and Code B. For
Huffman codes, and other variable length block codes, the impact
of an error depends on the characters following "a". In the
example, "abcde" is being transmitted. The impact of the single
bit error is enclosed by brackets and an error count shown to the
right for each of the two Huffman codes.

For code A, an error in the first bit of the code word for
*" leads to it being incorrectly decoded into the two characters
me" and "c"; i.e., one input character is decoded in error and
two erroneous characters are output.

For code B, an error in the first bit of the code word for
"a' leads to the next three characters being decoded in error for
a total of 10 characters being output erroneously.

For code A, the bit error does not lead to loss of character
synchronization; while for code B, it does. in general, bit
errors do lead to loss of synchronization for Huffman codes.

Some codes have been discovered which tend to lose character
synchronization less often and for shorter periods of time than
Huffman codes. These codes utilize an intermediate processing
step to define code words (comma insertion) and are called comma-
free codes. Comma-free codes are discussed in the next
subsection.

The error propagation dependency on Hutffman code illustrated
by figure 4 was potentially so important that a preliminary
simulation was con~ducted to preclude the possibility that the
example was a fluke. The simulations were for the two Hutffman
codes associated with the example presented in figure 1.

Table 1 summarizes the results of introducing a bit error in
the first bit of the first code word. This code word is the
encoded first character of the five characters shown in the
"input char(acter)' columns of the table; the impact of this bit
error on the decoding process is shown by presenting the
characters output from the decoder in the "output char~acterJ"
columns.

Two statistics summarize the experimental results presented
in table 1: the number of input symbols decoded in error (2.77
weighted average) and the number of output symbols in error (2.81
weighted average). This second statistic snows on the average
how long it takes to regain character synchronization after a bit
error is introduced.

The same simulation was run for different Huffman codes
obtained by changing the first, second, or third bit of each
codeword. The results shown in figure 5 show that there is a
very definite dependency of the error properties on the choices
made in constructing a Huffman code.

TABLE 1. ERROR RECOVERY TEST USING A FIVE CHARACTER ALPHABET

INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT
CHAR CHAR CHAR CHAR CHAR CHAR

abcde eeebcde bdeac eebceac dbcae eecbcae
abced eeebced bdeca eebceca dbcea eecbcea
abdce eeebdce beacd eeaacd dbeac eecbeac
abdec eeebdec beadc eeaadc dbeca eecbeca
abecd eeebecd becad eeacad dcabe eeccabe
abedc eeebedc becda eeacda dcaeb eeccaeb
acbde eeecbde bedac eeadac dcbae eeccbae
acbed eeecbed bedca eeadca dcbea eeccbea
acdbe eeecdbe cabde eceebde dceab eecceab
acdeb eeecdeb cabed eceebed dceba eecceba
acebd eeecebd cadbe eceedbe deabc eeceabc
acedb eeecedb cadeb eceedeb deacb eeceacb
adbce eeedbce caebd eceeebd debac eecebac
adbec eeedbec caedb eceeedb debca eecebca
adcbe eeedcbe cbade ecebede decab eececab
adceb eeedceb cbaed ecebeed decba eececba
adebc eeedebc cbdae ecebcae eabcd ceebcd
adecb eeedecb cbdea ecebcea eabdc ceebdc
aebcd eeeebcd cbead eceaad eacbd ceecbd
aebdc eeeebdc cbeda eceada eacdb ceecdb
aecbd eeeecbd cdabe ececabe eadbc ceedbc
aecdb eeeecdb cdaeb ececaeb eadcb ceedcb
aedbc eeeedbc cdbae ececbae ebacd cebecd
aedcb eeeedcb cdbea ececbea ebadc cebedc
bacde eebecde cdeab ececeab ebcad cedad
baced, eebeced cdeba ececeba ebcda cedda
badce eebedce ceabd ebebd ebdac cebcac
badec eebedec ceadb ebedb ebdca cebcca
baecd eebeecd cebad ebbed ecabd cceebd
baedc eebeedc cebda ebbca ecadb cceedb
bcade eedade cedab ebcab ecbad ccebed
bcaed eedaed cedba ebcba ecbda ccebca
bcdae eeddae dabce eecabce ecdab ccecab
bcdea eeddea dabec eecabec ecdba ccecba
bcead eedead dacbe eecacbe edabc cecabc
bceda eededa daceb eecaceb edacb cecacb
bdace eebcace daebc eecaebc edbac cecbac
bdaec eebcaec daecb eecaecb edbca cecbca
bdcae eebccae dbace eecbace edcab ceccab
bdcea eebccea dbaec eecbaec edcba ceccba

The results presented in table 1 were derived using the
following correspondence between characters and code words:

b <-> 1110 e <-> 0

C <-> 10

12

U,

00 0

cl)o ci'0CL U
cn JC a" 40 r
CO W 0OC a= 0 L.0

> cC O3 C- > = PC

C.I II <

V C)

cc 62

a' C)

LL4
JJl

.00

C)

Vr
I 62

LO CT)

Comma-free Codes

Comma-free codes are binary codes so constructed that it is
possible to identify individual code words prior to decoding the
received bit stream. In this report, we restrict our attention
to a particular family of comma-free codes, known as
"suffix/prefix" codes, found by R. A. Scholtz [reference 21.

In order to illustrate the ideas involved in Scholtz's
construction process, we choose a particularly simple example
derived from a somewhat longer example presented in his paper.
Figure 6 illustrates the Scholtz construction process for a code
constrained to a maximum code length of five.

Scholtz constructs his code words sequentially. The sets of
code words available to be assigned to characters are denoted by
"C", "C'", and "C''" in the example. Starting with the set "C",
consisting of two code words "0" and "1", the code set "C'" is
constructed by taking one of the two original code words and
using it as a suffix an arbitrary number of times for the other
code word, we chose to use "1" as a suffix and retain "0" as a
code word in "C,". Any of the words in "C'" could be used as a
suffix to create new code words and thus construct a new set of
code words "C''". We choose to use the shortest code word "0" as
a suffix to construct "C''". As a result "C''" contains no code
words of length one.

We have presented the code words in "C''" in rows according
to code word length and by columns beginning with still available
code words of "C'". Additional code words could be constructed
by choosing, for example, "01" as a suffix, and excluding it as a
code word in the new set "C''" constructed from "C''".

Generally speaking, new code words can be constructed by
either using suffixes or prefixes. The process can be carried
out any number of times.

Figure 7 illustrates the process used to construct "commas"
for the code illustrated in figure 6. Figure 7 shows the comma
construction process for an error-free channel and figure 8
illustrates the impact of errors on the construction process.

Suppose that the characters to be transmitted have been
assigned the code words shown in brackets in figure 8. The
transmitted and received bit stream would consist simply of the
bits enclosed in these brackets with no indication of where one
code word ended and another began.

Figure 7 shows the three-step process used to insert
"commas" i.e., to delineate the code words which were sent.Th
comma insertion process parallels the code construction process.
it proceeds by first inserting commas between all the bits and
then successively deleting those according to rules based on the
suffix choices.

14

LU '1=
CCf)

C-

C=:-
c-

CD,

c ~ o --

U--

-MC
- CCD

LU
C?) C:> -- CM

IL -w-q I

>< -I -< = C
= n 1I- L L -I-.'

-cc C= = = I cf= C_- r

U-C CD -C
C) ~LU -CLU CL)U

C?") LO~~
C?)3 I--

- LU = '-~

C:D)

-- c) --

I -- - C) -LU
=~c 3- f -- I--

I-" C) U

3C=) LUJ C-.) _

CL) C-)
Lr:C) -c

LU C.D

C-
c:) c: D:

a"

-C

C-D-

C=;,

LUU
-y -~ LO-

c~C=) F--

C/) C-

-I -L Cm, -
co C- LU

-:= c:>~- C-

C- -
- - C- I

=-
-. -L - -4= c

LU E-=

- - -

C =

16

To aid the reader in following the process, we have
maintained the bits in alignment from step-to-step in figure 7--
the spaces introduced for this purpose are not interpreted by the
decoder. Corresponding to choosing "1" as a suffix, commas are
removed preceding "1"s in the second step of the comma insertion
process. All the code words in "C'" are now isolated. Next,
corresponding to choosing "0" as a suffix to construct "C''", the
first comma is removed whenever ", 0," occurs. After the
deletion of these commas, all the codes words have been isolated.

Figure 8 traces through the impact of three character errors
on the comma insertion process. The transmitted bit stream is
the same as that presented in figure 7. The received bit stream
shown below the arrow labeled by "errors" has bit errors in the
third bit of the first word, the second bit of the fourth word,
and the second bit of the next-to-last word. The deletion comma
steps leads to the last bit stream. It is easy to see that the
leftmost bit error would lead to a character decoding error, but
not loss of character synchronization; the second bit error would
lead to the previous character and the character with the bit
error both being decoded incorrectly, i.e., to lost of character
synchronization; the rightmost bit error also leads to the
previous character and the character with the bit error being
decoded incorrectly and loss of character synchronization.

Even with three bit errors introduced into three of eight
characters, three characters were still correctly decoded in the
above example. This example shows less impact of errors than
previously shown by the Huffman code example.

There are choices in the construction of comma-free codes
that would lead to the same distribution of code word lengths,
and hence to the same data compression. The behavior of the code
in an error channel depends on these choices. This can be
illustrated by considering two particularly simple codes that
have the same distribution of word lengths. One code is
constructed by first using "1" as a suffix and then "0" as a
prefix. The second code is constructed by first using "1" as a
suffix and then "0" as a suffix, namely the code illustrated for
up to length five code words in figure 6. The first code will be
referred to as the suffix-prefix code and the second code as the
suffix-suffix code. (These codes turn out to be very important
for practical applications; this will be discussed in a later
section.)

The code words of either of the two codes have lengths 2 to
m > 1. The code words are easy to describe mathematically:

(a) suffix-prefix code words are of the form

k "O"s followed by h "1"s with k > 0, h > 0, k +h <= m

17

- - - C.,

-= C C.D 0, :=- =

__> c:: C= C C.,

LLJ~N 0-q

* L - - m Cfl "-

cr) L) CD= 0C

q< e- -j Cl-

U~ - U NJ C...

0 W CCl <~)
-~c cc cc ' -

=J L1J LLI

0) C LU

C=)

C- = = => C>U L o -

m~ - C 3 E(=

C=> C= C- -n -I 0 L C.))LI

C- C Z Cf) C3)LLi(

~cu L)

= CL)

ClCD

18C-

(b) suffix-suffix code words are of the form

1-"O" followed by k "1"s followed by h "O"s with
k > 0, h >= U', 1 + k + h <= m

It is particularly easy to describe the impact of bit errors
on the comma insertion process of the suffix-prefix code. Figure
9 summarizes the impact of bit errors on the process as a
function of where the bit error occurs in a code word bracketed
by two other code words. Four cases are distinguished: first bit
in error, either of the two transition bits from "0" to "1" in
error, last bit in error, and a central "0" or "1" bit in error.

The comma insertion process can lead to code words which are
longer than m bits and therefore not decodable. If the first bit
is in error, and k2 > 1, then this occurs only if the first word
has maximal length m; if the last bit is in error, and h2 > 1,
then this occurs only if the last word has maximal length m. :n
general, if the first bit is in error and k2 > 1, a comma is
inserted (incorrectly) one position to the left; if the last bit
is in error and h2 > 1, a comma is inserted (incorrectly) one
position to the right. If the first bit is in error and k2 =1

then the comma between the first and second word is deleted
leading to a code word of the length k1i hi 1 +h2. The new
word being non-code word if this expression exceeds m. Likewise,
if the last bit is in error and h2 - 1, the comma between the
second and third word is deleted leading to a code word of length
k2 + 1 + U3 + h3, which can be non-code word if this expression
exceeds m.

Errors in the transition bit, namely the k2-th bit or the
(k2.1)-th bit, with k2 > 1 and h2 > 1, does not impact the
positions at which commas are inserted. The resulting erroneous
word is always decoded as a single character.

Errors in the middle of a string of "0"s or in the middle of
a string of "i"s lead to the insertion of a spare comma within
the middle word. The middle word is always decoded as two
characters for these cases.

In summary, this survey of the impact of bit errors on the
suffix-prefix comma insertion and decoding process has shown that
a single bit error can lead to at most one comma being inserted
incorrectly. All the following possibilities occur: the comma

* between the first two words can be deleted or moved to the right,
the comma between the second and third words can be deleted or
moved to the left, or a new comma can be inserted splitting the

* middle word. However, it can happen the commas are all inserted
correctly and only a decoding error occurs. A single bit error
leads to either one or two character errors so that, unlike
Huffman codes, the impact of a single bit error on character
decoding is strictly limited.

A discussion of the impact of bit errors on the suff ix-
suffix code is somewhat more complicated than for the suffix-

19

iN I-- C

a aj
-jccC)C

7] cc LU =~ _n C
0 1 LU -C CD-iI-

-C-

CD C-.) LL

I- I~

0U 6-4a)=m > c UU C/ ~ L

0) LJW 0i C
3C C)I- C L. -

P-)= CD U*
m~~ 03-tccCw >1

CD C-)CZ

0~C CD%4-4-
XS-IWcc:1C- c

cn0c

prefix code because the suffix-suffix code words have a more
complicated structure.

Figure 10 illustrates the impact of errors for different bit
positions in the middle code word of three successive code words.

The impact of an error in the first bit of the middle word
depends on the first word, namely on whether or not hl > 0. I
hi > 0 then the middle word "steals a 0 " from the first word;
if hl - 0 then the comma between the first and middle word is
deleted and the second word is "added onto" the first word.

A bit error in the second bit position of the middle word
leads one or more "0"s being added to the first word depending on
whether or not k2 > 1.

Errors at other bit positions lead to similar behavior for
the suffix-suffix code as described for the suffix-prefix code.

Our brief discussion of the suffix-suffix code indicates a
clear performance difference between the suffix-prefix code an(,
the suffix-suffix code in an error channel. Both codes share the
property that a single bit error leads to at most two successive
characters being decoded in error and the misplacement of at most
one comma.

DATA COMPRESSION

This section contains four subsections. in the first
subsection, the probabilities of occurrence of the characters
appearing in four different narrative files are discussed. In
the next three sections, the generalized Baudot codes, Huffman
codes, and comma-free codes providing the best data compression
for character encoding based on these probabilities of occurrence
are identified.

Introduction

Four narrative files resident on the hard disk of the IBM PC
were used to investigate compression and error properties of data
compression codes. The data compression possible using character
encoding is determined by the probabilities of occurrence of the
characters in the data being encoded. In this section, data
compression results are obtained for encoding based on character
probabilities of occurrence in the four narrative files.

Table 2 summarizes the general properties of the four
narrative files used throughout this study. Table 2
characterizes the four narratives in terms of the number of lines
of text and the number of bytes in them. The four narratives
were all technical documents involving some equations.

Table 3 completes the description of the narratives relevant
to their use for data compression investigations by presenting
the probabilities of occurrence for the different characters for

21

C--

C-D

cc~

21 lE *-FE

~LLW

I- U- U - > U- C-
L1J0;. 1 4 0W c0 -

C Z C) CD. D 4 c

3LL

TABLE 2. SUMMARY OF NARRATIVE FILES
(IBM PC MASS-li FILES)

NARRATIVE NUMBER OF NUMBER OF
FILE DESCRIPTION BYTES LINES

I INVENTION DISCLOSURE OF NESTED 31,744 612
SPATIAL-TEMPORAL INTERFERER
SUPPRESSOR

II INVENTION DISCLOSURE OF SPATIAL 28,672 503
COMBINER

III MEMO RE:MEECN MTG OF 12,288 207
19-20 NOV 1985

IV ADAPTIVE ALGORITHM PERFORMANCE 13,312 290

23

TABLE 3. CHARACTER PROBABILITIES OF OCCURRENCE FOR
FOUR NARRATIVE FILES

NARRATIVE NARRATIVE NARRATIVE NARRATIVE
CHARACTER FILE I FILLE 11 FILE III FILE IV

U0.3085 0.3171 0.2851 0.4095
E0.0855 0.0865 0.0882 0.0664

T 0.0636 0.0677 0.0585 0.0492
N 0.0543 0.053" 0.0483 0.0407
0 0.0416 0.0518 0.0505 0.0420
1 0.0513 0.0511 0.0537 0.0426
A 0.0455 0.0450 0.0499 0.0434
R 0.0392 0.0421 0.0471 0.0438
S 0.0372 0.0391 0.0440 0.0367
H 0.0277 0.0263 0.0291 0.0162
C 0.0193 0.0232 0.0245 0.0216
L 0.0233 0.0218 0.0262 0.0226
D 0.0191 0.0206 0.0327 0.0165
U 0.0142 0.0185 0.0147 0.0165
P 0.0163 0.0170 0.0171 0.0164

M 0.0120 0.0162 0.0230 0.0150
F 0.0151 0.0141 0.0190 0.0169
G 0.0117 0.0121 0.0163 0.0109
B 0.0049 0.0101 0.0017 0.0067
V 0.0136 0.0099 0.0078 0.0077
w 0.0147 0.0082 0.0080 0.0030

0.0073 0.0076 0.0075 0.0087
Y 0.0050 0.0058 0.0074 0.0026

0.0062 0.0001 0.0036 0.0060
0.0016 0.0039 0.0024 0.0024
0.0016 0.0039 0.0024 0.0024

-0.0047 0.0034 0.0044 0.0053
1 0.0078 0.0024 0.0015 0.0054
K 0.0040 0.0023 0.0014 0.0008

/0.0003 0.0016 0.0003 0.0019

NOTE: "denotes blank

24

TABLE 3. CHARACTER PROBABILITIES OF OCCURRENCE FOR
FOUR NARRATIVE FILES (CONT.)

NARRATIVE NARRATIVE NARRATIVE NARRATIVE
CHARACTER FILE I FILE II FILE III FILE IV

J 0.0016 0.0014 0.0011 0.0000
X 0.0018 0.0013 0.0017 0.0008
2 0.0059 0.0013 0.0016 0.0031

0.0031 0.0011 0.0000 0.0000
- 0.0019 0.0010 0.0002 0.0000
Z 0.0002 0.0009 0.0011 0.0004
Q 0.0014 0.0008 0.0012 0.0004
3 0.0015 0.0007 0.0010 0.0018
0 0.0009 0.0005 0.0014 0.0050
- 0.0000 0.0005 0.0000 0.0000
" 0.0003 0.0003 0.0003 0.0000
4 0.0000 0.0003 0.0002 0.0001

0.0014 0.0002 0.0000 0.0000
0.0006 0.0002 0.0008 0.0004

8 0.0001 0.0002 0.0005 0.0015

0.0000 0.0002 0.0000 0.0000
5 0.0001 0.0002 0.0005 0.0014
9 0.0000 0.0002 0.0007 0.0034
* 0.0021 0.0002 0.0000 0.0000

0.0000 0.0002 0.0006 0.0000
6 0.0000 0.0001 0.0002 0.0015
> 0.0000 0.0001 0.0001 0.0000
7 0.0000 0.0001 0.0001 0.0001

0.0000 0.0001 0.0002 0.0004
< 0.0000 0.0000 0.0002 0.0000

0.0000 0.0000 0.0001 0.0000
* 0.0018 0.0000 0.0000 1.0000

0.0000 0.0000 0.0001 0.0000

NOTE: * denotes blank

25

each of the four narrative files. The character ordering is
based on the probabilities of occurrence of the characters. The
probabilities of occurrence of the characters are similar for the
four narrative files. This similarity becomes clearer when
cumulative probabilities of occurrence are examined for the
characters partitioned in subsets of 15 characters. Table 4
presents the sums of the probabilities of occurrence for the
characters in nominal 15 character subsets.

In the next subsection, we show how the probabilities in
table 3 can be exploited through the design of codes with a
block-like structure (generalized Baudot codes). In the next
subsection, the average number of bits-per-character is
calculated for the Huffman codes constructed using these
probabilities of occurrence. In the third subsection, a
technique is presented for matching as closely as possible the
distribution of available word lengths for comma-free codes to
those provided by a Huffman code.

Table 3 suggests that if we could match the code word
lengths of the words assigned to the 10 to 15 characters with the
highest probabilities of occurrence, we should achieve nearly the
same compression for a comma-free code as for a Huffman code.
This turned out to be the case and motivated the order chosen to
present the material in this section.

Generalized Baudot Codes

The encoding of a 58-character set with a block code
requires 6 bits. The standard Baudot code uses a shift character
so that a structured code using 5 bits or 10 bits (in effect) ca .
be utilized to code the 58-character set.

The shift symbol is not an information carrying character;
i.e., the shift by itself transmits no information. The bits-
per-character for the best single shift code is obtained as

5 - 5(probability of occurrence of any of the 27 least
commonly occurring characters)

The average number of bits-per-character turn out to be 5.08,
5.06, 5.06, and 5.06, for narrative files I, II, III, and IV,
respectively. Note, therefore, that the Baudot code represents a
compression gain over block coding of 6/5 = 1.20. The
compression gains for Huffman and comma-free codes should be
relative to the Baudot code (not a block code). For this reason,
the compression gains implied by the results obtained using these
codes in this study are less than those generally quoted in the
literature on these codes. In the literature, the block code is
usually taken as the basis for compression calculations.

Consider a generalized Baudot code using more than one shift
symbol. Suppose, in particular, that the shifts were used to
produce a code with 15 words of length 4, 15 of length 8, 15 of
length 12, and 13 of length 16. One of the first 16 code words

26

TABLE 4. PROBABILITIES OF CHARACTER OCCURRENCE FOR ANY
CHARACTER IN 15 CHARACTER SUBSETS OF THE
FOUR NARRATIVE FILES

NARRATIVE CHARACTERS CHARACTERS CHARACTERS CHARACTERS
FILE 1-15 16-30 31-45 46-58

I .849 .135 .0158 .0002

II .882 .106 .011 .001

111 .879 .108 .012 .001

IV .884 .102 .014 .000

27

is a shift, i.e., leads to a different interpretation of the next
code word, one of these code word3 is reserved to lead to still
another interpretation of the next code word, and one of these is
reserved to lead to still another interpretation of the next code
word. In each case a shift only applies to the next code word.
The number of bits-per-character for this particular code is
given by:

4 + 4 (probability of occurrence characters '6-30)

+ 4 (probability of occurrence characters 31-45)

+ 4 (probability of occurrence characters 46-58)

where the characters have been successively numbered beginning
with the most commonly occurring character and ending with the
least commonly occurring character. The average number of bits-
per-character required to transmit information using this code is
4.68, 4.52, 4.54, and 4.52, for narrative files I, II, III, and
IV, respectively.

Further generalizations of Baudot codes do not seem
promising. For example, an attempt to match the distribution of
word lengths for Huffman codes by a code build in terms of
multiples of 3 leads to the following code word structure: 6
words of length 3, 12 words of length 6, 30 words of length 9,
and 10 words of length 12. The average number of bits-per-
character for this code was found to be 4.5 bits-per-character
for narrative file I. It provides slightly greater compression
with a far greater complexity that the code based on multiples of
4.

Huffman Codes

The structure of a Huffman code in the sense of its
distribution of lengths of code words is determined by the
probabilities of occurrence of the 58 characters in the narrative
file (provided some convention to treat equi-probable sets in the
construction process is adopted). Table 5 summarizes the code
words assigned by the particular computer implementation of the
Huffman constructed process that we used in our study. These
code word lengths were obtained using the probabilities of
occurrence of the characters presented in table 3 for the four
narrative files. The order of the characters is the same in
table 5 as that in table 3 and the characters are partitioned
into sets of 15 characters to facilitate our discussion of table
5.

Recall that the probability of occurrence of one of the
first 15 characters listed in table 5 exceeds .84 for all the
narrative files. The word lengths assigned to the first 15
characters based on the probabilities of occurrence of the
characters in the different narrative files never differ by more
than one bit. The word lengths are nearly the same for the next
15 characters and tend to differ greatly only for the least

28

TABLE 5. HUFFMAN CODE WORD LENGTHS FOR FOUR NARRATIVE FILES

WORD LENGTHS WORD LENGTHS
FOR NARRATIVE FILE FOR NARRATIVE FILE

,CHAR I II III IV CHAR I I1 111 IV

2 2 2 1 J9 9 10 22
E 3 3 4 4 X 9 9 9 11
T 4 4 4 4 2 10 8 10 9
N 4 4 4 5 + 10 8 18 15
0 4 5 4 5 -10 9 13 21
I 4 4 4 5 Z 10 12 10 12
A 4 4 4 5 Q 10 10 10 12
R 5 5 4 5 3 10 9 10 10
5 5 5 5 5 0 11 10 9 8
H 5 5 5 6 -11 25 19 27
C 5 6 5 6 11 12 11 18
L 6 5 5 6 4 12 15 12 13
D 6 6 5 6 12 9 19 27
U 6 6 6 6 .12 11 10 11
P 6 6 6 6 8 12 14 11 10

M 6 6 6 6 @12 18 16 24
F 6 6 6 6 5 12 12 11 10
G 6 6 6 7 9 13 22 10 9
B 7 8 6 8 *12 9 17 26
V 7 6 7 7 12 24 11 19
W 7 6 7 9 6 13 19 13 10

*7 7 7 7 >13 17 13 23
Y 7 8 7 9 7 14 20 13 14

7 7 8 8 015 21 12 11
8 7 9 9 <16 25 12 20
8 7 9 9 17 23 13 17

-8 8 8 8 #18 13 15 25
19 7 9 8 %18 16 14 16

K 9 8 9 11
/9 11 11 9

NOTE: ""denotes blank

29

probable characters. This means that use of any of the four
narrative files as a training file should lead to similar
compression results for encoding the narrative files.

Some of the differences between word lengths presented in
table 5 could have been lessened by adopting a different
convention for equi-probability character sets. In particular, a
different convention should have been adopted for treating
characters with zero probability to ensure that they would all be
assigned code words of the same length or nearly the same length.
This was discovered after the fact. For example, a better
assignment of code words to zero probability of occurrence
characters could have been achieved by assigning a very small
probability of occurrence, say one .0000001 to each of them.

The data compression performance can be summarized by the
average number of bits-per-character required to transmit the
different narrative files using the four Huffman codes associated
with their differing probabilities of occurrence. We refer to
the narrative file used to estimate character probabilities of
occurrence as the training file.

The average number of bits-per-character required to encode
the training file itself can be calculated directly as the sum of
the probabilities of occurrence of a character with the length of
the code word assigned to it for the training file (the value
obtained by summing the entries in the second columns of tables 1
through 4).

The average number of bits-per-character required to encode
the remaining three narrative files using a Huffman code
constructed from the training file is obtained by multiplying
each character probability of occurrence in the narrative file
under consideration by the length of the Huffman code assigned to
that character and summing the results.

Table 6 summarizes the results of the Huffman code average
bits-per-character calculations. Note that using narrative files
II and III as training files gave nearly the same results. The
maximum difference between two entries of the tables occurred
when narrative file IV was used as a training file for narrative
file I; the difference was only .23 bits-per-character.

Most of the reduction in the average number of bits required
to transmit a character shown in table 5 occurs because of the
high probability of occurrence of a blank in the narrative files.
This can be seen by calculating the average number of bits
assigned to the non-blanks for the Huffman codes assigned to each
of the narratives using it as a training file.

Let p(x) denote the probability of occurrence of a blank for
a narrative x and let n(x) denote the code word assigned to
blanks for that narrative. Then the average number of bits per
non-blank character b^ can be calculated from the average value

30

TABLE 6. AVERAGE NUMBER OF BITS-PER-CHARACTER FOR
HUFFMAN CODES AND DIFFERENT TRAINING FILES

TRAINING NARRATIVE NARRATIVE NARRATIVE NARRATIVE
FILE FILE I FILE I! FILE III FILE IV

I 4.04 4.05 4.24 3.77

II 4.12 3.95 4.19 3.73

11 4.12 3.96 4.15 3.72

IV 4.27 4.05 4.32 3.63

31

for all characters b (values given by the diagonal entries in the

table 5) for manuscript x by using the formula:

b^ = (b - p(x)n(x))/(1-p)

Using this formula, b' values of 4.9, 4.9, 4.8, and 6.1 bits-
per-character were obtained for narratives I, I, I1, and IV,
respectively.

Comma-free Codes

Surveying Comma-Free Codes

The construction of a Huffman code leads to a code providing
the best data compression. The construction process described by
R. A. Scholtz leads to a family of codes with word lengths
depending on the choices of suffixes and prefixes used in the
steps of the construction process. R. A. Scholtz does not
discuss how to match the comma-free construction process to the
probabilities of occurrence of the characters to be encoded to
provide the best compression. We have found a solution to this
problem.

In this section, we develop an approach to surveying the
distributions of code word lengths that can be obtained by
different choices of suffixes and prefixes. In the next
subsection, we show how to choose a comma-free code that gives
the best compression given a character set and the probabilities
of occurrence of the characters in the set.

The method that we found allows us to survey codes in terms
of the distributions of their code words and can be conducted
without specifying the particular code word chosen at each step
of the construction process, or whether the chosen word at each
step is used as a suffix or a prefix. All that need be specified
is the lengths of the words chosen for suffixes and prefixes.

The R. A. Scholtz comma-free code construction process is
sequential. A natural way to survey the codes is to survey them
inductively based on the construction steps. We proceed to make
this idea precise.

Let C[k] denote the set of code words produced after the
first k steps of the construction process. Let C[01 = { 0, 1 1
be the starting point in the construction process.

We seek to describe the distribution of code words by length
in the set C[k+1J given the distribution of code words by length
in the set C[k] and the choice of a word of length s as either a
suffix or prefix in the (k.1)-th step of the construction process
of R. A. Scholtz.

Let nfk](j) denote the number of code words of length j in
set C[k]. For example, suppose C[11 is constructed from C[03

32

using either "0" or "1". In this case, n[0](1) = 2 and n[0J(j) =
0 for j > 1 and n[I](1) = for j > 0.

In the suffix/prefix construction process a word used as a
suffix or prefix can no longer be used as a code word. It is
convenient to describe n[k+1](j) in terms of n^[k](j) when a word
of length s is chosen for constructing C[k+l] from C~kj.

Let

n^[k](j) = n[k](j) - 1 if j = s

= n[k](j) if j A s

Then

n[k+1](j) = n^[k](j) + n^(k](j-s) + ... + n^[k](j-ns)

with the convention that nA[k](j-ns) = 0 if j - ns < 1

In words, to obtain the number of code words of length j in set
C[k+1j one simply adds the numbers of code words in C[k]
(excluding the single code word used as a suffix or prefix,
namely, n^[k](j)) plus those which could be obtained by adding
the suffix/prefix to available words of length j-s (namely,
n^[k](j-s)) plus those which could be obtained by adding the
suffix/prefix word twice to available words of length j-2s
(namely, n^[k](j-2s)), etc.

The above procedure is ideal for compiling tabular summaries
of distributions of code word lengths for available comma-free
codes constructed using the suffix/prefix process. Tables 7
through 10 present word length distributions of some of the
comma-free codes which can be constructed in this manner. With
the exception of the first column, the numbers of code words in a
code are only summarized up through the length of code word
needed to allow the coding of 58 characters. There are an
infinite number of code words of ever increasing lengths
available for each of the codes.

The codes summarized in the tables all begin with
C[O - { 0, 1 1, CPI] constructed using a length 1 code word (by
necessity), and C[2] constructed from CPI] using the other
available length 1 code word (not a necessity).

The columns contain the number of code words of the length
labeling the rows. The number enclosed in parentheses under the
column labels is the length of the code word used to construct
that code set from the code set with distribution of word lengths
given by the previous column. For example, in table 7, the code
set C[31 is obtained from the code set C[2] through use of a
suffix or prefix word of length 2 (there happens to be only one
code word of length two available in this example, it would be
either "01" or "10" depending on the particular choices of
prefixes or suffixes used in the construction of C[Il and C[23.

33

TABLE 7. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1,2 AND 3 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMM4A-FREE CODE

(0) (1) (2) (3) (41 (5)
WORD !C C C C C C

LENGTH ()()(2) (3) (3)

12 1

2 1 1

3 1 2 21

4 1 3 3 3 3

5 I1 4 6 6 6

6 15 8 9 9

7 16 12 15 18

8 17 15 21 27

9 18 18 2-7

10 1 9 24

1 1 10

12 11

NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY TO REACH
58 OR MORE CODE WORDS

34

TABLE 8. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1, AND 3 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMMA-FREE CODE

(0) ()(2) (3) (4)
WORD C C C C C
LENGTH ()(1) (3) (3)

1 21

21111

3 12 10

4 13 3 3

5 14 5 6

6b 5 6 6

7 1 6 9 12

8 1 7 12 17

9 1 8 14 20

10 1 9 18

11 10

12 .11

NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY
TO REACH 58 OR MORE CODE WORDS

35

TABLE 9. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1,2 AND 4 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMMA-FREE CODE

(0) (1) (2) (3) (4) (5)
WORD C C C C C C
LENGTH (1) (1) (2) (4) (4)1

12 1

2 11

3 1 2 2 2 2

4 1 3 3 2 1

5 1 4 6 6 6

6 1 5 8 8 8

7 1 6 12 14 14

8 1 7 15 17 18

9 1 8 18 24 30

10 1 9 24

11 1 10

12 1 11

NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY TO REACH
58 OR MORE CODE WORDS

36

TABLE 10. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1, AND 4 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMMA-FREE CODE

(0) (1) (2) (3)
WORD C C C C
LENGTH' (1) (1) (4)

I 2 1

2 1 1 1

3 1 2 2

4 1 3 2

5 1 4 4

6 1 5 6

7 1 6 8

8 1 7 9

9 1 8 12

10 1 9 15

11 1 10 22

12 1 11

NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY
TO REACH 58 OR MORE CODE WORDS

37

Figures 11 and 12 illustrate the tailoring of the
distribution of word lengths possible by using some of the two-
or three-step constructions and some of the two-- or four-step
constructions, respectively. The figures are constructed to
compare the code words available through selected comma-free
constructions to encode a 58-character set. Each curve is
labeled by the suffix/prefix word lengths leading to the plotted
code set.

Choice of a Comma-free Code for a 58-character Set

It is possible to calculate the average number of bits-per-
character for a given character set and the probabilities of
occurrence of the characters in the sets for each candidate
comma-free code. The calculation would consist of first ordering
the characters by probability of occurrence (say from highest to
lowest) and assigning code words to the characters by ordering
the available code words from shortest to longest. A sum over
the character set of the probability of occurrence of a character
multiplied by the character code word length then is the average
number of bits-per-character for the code.

It is possible to reduce the comma-free code candidates to a
few obvious front-runners by using Huffman. code words as a gauge
for the candidates.

The probabilities of occurrence for the character set used
for our 58 character simulations of the Huffman code, has the
property that the character probabilities fall off rapidly from
the most used characters to the least used characters as shown in
table 3 which was presented earlier. In such a situation, if we
could closely match the code word lengths provided by the Huffman
code constructed for the given character probabilities of
occurrence for the first 10 to 15 characters, we would expect
very similar compression performance from that comma-free and a
Huffman code.

Table 11 shows how closely the simplest suffix/prefix
candidate code word lengths match those provided by the Huffman
code. The first four columns of word lengths repeat the
information presented earlier in table 4 for Huffman codes and a
fifth column presents the word lengths for any of the suffix-
prefix comma-free codes obtained by use of "0" and "1" as
suffixes or prefixes in a two-step construction. The assignment
of code words to characters is presented for the ordering
provided by the probabilities of occurrence of characters in
narrative file II. However, as can be seen from table 11, this
assignment leads to excellent word length agreement through the
first 40 characters, regardless of which narrative file is used
as the training file.

Consider the first fifteen rows of table 11 for word lengths
of the Huffman code for narrative file Il and for the comma-free
code. For the third character ("T"), the commfa-free code is one

38

C)

U),

CDC

00

w * -

I______

0

C_ C-
CD

E CD CD

TABLE 11. HUFFMAN AND COMMA-FREE CODE WORD LENGTHS
FOR FOUR NARRATIVE FILES

WORD LENGTHS WORD LENGTHS
FOR NARRATIVE FILE COMMA- FOR NARRATIVE FILE COMMA-

CHAR I II III IV FREE CHAR I II III IV FREE

2 2 2 1 2 J 9 9 10 22 9
E 3 3 4 4 3 X 9 9 9 11 9
T 4 4 4 4 3 2 10 8 10 9 9

N 4 4 4 5 4 + 10 8 18 15 9
O 4 5 4 5 4 = 10 9 13 21 9
I 4 4 4 5 4 Z 10 12 10 12 9
A 4 4 4 5 5 Q 10 10 10 12 10
R 5 5 4 5 5 3 10 9 10 10 10
s 5 5 5 5 5 0 11 10 9 8 10
H 5 5 5 6 5 - 11 25 19 27 10
C 5 6 5 6 6 " 11 12 11 18 10
L 6 5 5 6 6 4 12 15 12 13 10
D 6 6 5 6 6 12 9 19 27 10
U 6 6 6 6 6 12 11 10 11 10
P 6 6 6 6 6 8 12 14 11 10 10

M 6 6 6 6 7 @ 12 18 16 24 11
F 6 6 6 6 7 5 11 12 11 10 11
G 6 6 6 7 7 9 13 22 10 9 11
B 7 8 6 8 7 * 12 9 17 26 11
V 7 6 7 7 7 ; 12 24 11 19 11
W 7 6 7 9 6 13 19 13 10 11
* 7 7 7 7 8 > 13 17 13 23 11
Y 7 8 7 9 8 7 14 20 13 14 11

7 7 8 8 8 ' 15 21 12 11 11
9 7 9 9 8 < 16 25 12 20 11
8 7 9 9 8 17 23 13 17 12

- 8 8 8 8 8 # 18 13 15 25 12
9 7 9 8 8 % 18 16 14 16 12

K 9 8 9 11 9
/ 9 11 11 9 9

NOTE: THE COMMA-FREE CODE HAS BEEN CHOSEN TO BEST MATCH THE
WORD LENGTHS OF THE HUFFMAN CODE FOR NARRATIVE FILE II

41

bit shorter than the narrative file II word length, which leads
to a decrease in the expected number of bits of .0677. Only two
characters ("A" and "C") of the first 15 are oie bit longer,
which leads to an increase in the expected number of bits of
.0450 and .0232. The net difference (or penalty for using the
comma-free code) between the average number of bits-per-character
for the first 15 characters is only .0005 bits-per-character.
For the remaining rows the penalty for using the comma-free code
is at most .0162 bits for any character and only above .01 for
three characters. The overall penalty for using the comma-free
code rather than a Huffman code for compression (based on
narrative file II) is only .045 (rounded down to three places)
bits-per-character.

Table 12 presents a comparison between Huffman code bits-
per-character values and comma-free code bits-per-character
values for the code word to character assignments shown in table
11. Slightly lower average bits-per-character values are
possible for comma-free codes encoding narrative file codes I,
III, and IV than those shown in table 12. However, the
performance differences between the Huffman codes and the comma-
free codes are so small that we did not investigate other
matchings of comma-free codes to Huffman code word lengths for
these cases. The Huffman code average bits-per-character values
are those obtained using the assignment of code words to a
narrative file based on the probabilities of occurrence of its
characters.

The next best comma-free code appears to be the code (7, 1,
3) for which similar calculations revealed a penalty of .114
(rounded down to three bits) bits-per-character for using this
comma-free code instead of the Huffman code for narrative file
II.

It appears from this example that similar procedures would
allow us to find a comma-free code giving nearly the same
compression behavior as a Huffman code, provided that the
probabilities of occurrence of the characters in the character
set fall off in a reasonable manner from the highest probability
of occurrence to the lowest.

COMPRESSION CODE PERFORMANCE IN A CHANNEL WITH ERRORS

In this subsection we estimate the performance of
generalized Baudot codes, Huffman Codes, and Comma-free codes in
a channel with errors. The generalized Baudot and comma-free
codes could be studied analytically. Huffman codes were studied
through use of simulations. Each code is evaluated by estimating
the average number of characters decoded in error per bit error
and the average number of characters output by the decoder in
errcr per bit error.

42

TABLE 12. COMPARISON OF BITS-PER-CHARACTER VALUES
OF HUFFMAN AND COMMA-FREE CODES

B ITS-PER-CHARACTER

NARRATIVE
FILE HUFFMAN CODE COMMA-FREE CODE

I 4.04 4.10

1I 3.95 4.00

TI 4.15 4.26

IV 3.63 3.81

43

Generalized Baudot Codes

The performance of the generalized Baudot codes is simple to
evaluate because a single bit error always leads to one character
being decoded in error, whether it occurs in a code word of an
information carrying character or a shift character. If the bit
error occurs in the code word of an information character that
character is decoded in error, and if it occurs in a shift
character then that character and intervening shift characters
through the first information character are output as error
characters.

For the single-shift 5 bit based Baudot code, the statistics
are:

1 character decoded in error per bit error

1.01 to 1.02 output character in error per bit error
depending on the training file

For the three-shift 4 bit based Baudot code, the statistics
are:

I character decoded in error per bit error

1.13 to 1.17 output character in error per bit error
depending on the training file

Huffman Codes

Introduction

Simulation results were obtained for the 95-character symbol
set associated with the IBM PC. It was intended to develop
software and plan further analysis based on these results and
then to apply lessons learned to the processing of a Navy message
data base. The Navy message data base was not available in a
timely enough manner to allow the analysis to continue without
interruption so it was decided to emulate the 58-character set
(Baudot) used in Navy communications by reducing the 95-character
IBM PC set to 58 characters. This was accomplished by use of the
all capital letter option of the operating system and by editing
the documents being processed to be free of selected special
symbols. This section contains three subsections: the first
describes the simulation software; the second, the results
obtained for a 95-character set; and the third, the results
obtained for a 58-character set.

Description of Simulation Software

The original program reads a text file and counts the namber
of occurrences of each character; from this, a Huffman code is
constructed using the construction process first described by
Huffman in his original paper. This construction process has
numerous degrees of freedom. In order to study the relationship

44

between the performance of a Huffman code in a channel with
errors and the specific choices made in the Huffman construction
process, a program was written that allowed the user to specify
the probability that the character set with the highest
probability of occurrence would be assigned a "1" at each stage
of the construction process. (Even though it turned out that the
probability of a "1" occurring was not a meaningful parameter,
varying the probability of a "1" occurring allowed searches to be
conducted for a particular Huffman code with better performance
:a channel with errors than most codes which could be

constructed.) The probabilities of occurrence for each character
and the assigned Huffman code words for each character are
written to files so that the particular code used to obtain a
particular set of performance results could always be recovered
established if desired.

Four basic programs were written to exercise Huffman codes:
(1) a program which would encode a taessage file using the Huffman
code, (2) a program to introduce random bit errors into the
encoded file (the probability of a bit error is user specified),
(3) a program to decode the encoded bit stream, and (4) a program
which compares the decoded bit stream with the original message
and accumulates various error statistics.

An additional software program was developed to evaluate the
feasibility of a user correcting character errors through message
context. The program was interactive and allowed the user to
select any character (of 20 displayed characters) of the message
for possible reinitiation of the Huffman decoding process. The
interactive program would retrieve the code word of the selected
character and reinitiate the Huffman coding process by altering
each bit in its code word. The new characters would be displayed
and after the trial decodings were completed, the user could
choose the most acceptable string of characters and the software
would implement the bit change in the original bit stream
corresponding to the selected option. The software compares the
selected character strings with the original message and records
the number of errors (total) and number of corrected errors.

Simulation Results for a 95-character Set

Figure 13 summarizes the results of an extensive search for
the Huffman code providing the best performance in a channel with
errors. The code word lengths of all of the codes constructed
are the same because the grouping of the characters, as discussed
earlier, is the same for all of the codes. They differ only in
the choices of "1" or "0" at each stage of the Huffman
construction process. The experiments were run by varying the
probability that the set of characters with highest probability
of occurrence at each stage was assigned a "I". The vertical
scale is the average number of characters decoded in error (input
characters to the decoder) per bit error. Each Huffman. code was
exerc,-sed against each of the four narrative files described in
-ne previous paragraph and the maximum and minimum~ average number

X c

CC

0 a

Zr.l
CO

-f-L

4-J-

CU~ Lnm

= = r-

C-C

CD-

of characters decoded in error per nit error tor tnese tour
narrative files plotted.

Figure 13 shows that the average number of decoded
characters per bit error is definitely dependent on the Huffman
code. The dependence on narrative file is small compared with
the dependence upon the code used. Figure 14 shows this in
another way, showing the dependence of the average number of
decoded characters per bit error for the best performing code,
the worst performing codes, and two selected average performing
codes.

Figure 15 presents a distribution of all of the average
number of decoded character per bit error values obtained for the
different experiments on the narrative files presented in figure
13. It is particularly noteworthy that the four results obtained
for the code with the lowest value fall into the two lowest value
bins of figure 13. Figures 13 and 15 clearly show that the code
with the best error ratios was clearly the best performing code
in a channel with errors.

Some experiments were run using an operator-interactive
program. These experiments were designed to determine the
percentage of errors introduced into a text file through Huffman
encoding, transmission in a noisy channel, and Huffman decoding
that could be corrected through narrative context. In
particular, it appears possible to use a standard spell check
program as a basis for reinitializing Huffman decoding after
changing a bit likely to be in error. The potential of such an
algorithm could be assessed by using an operator-interactive
program--with the operator choosing the decoding which provided
text which made the most sense.

A 4271 character narrative file consisting of 88 lines and
4456 bytes was chosen to assess operator-interactive correcting
of narrative character errors. Bit errors were introduced
randomly at a rate of .005. This error rate would lead to an
estimated 90 characters containing a bit error ((.005)(4271
characters)(4 bits/character)). These 90 character errors led to
362 character decoding errors. After the inter-active session
the operator was able to reduce the number of character decoding
errors to 85 errors (that is the number of character errors were
reduced by 76 percent).

Simulation Results for a 58-character Set

A series of simulations was run to find the best performing
Huffman code in a channel with errors. Trials were run using the
probabilities of occurrence of the characters in each of the four
narrative files. Each Huffman code was then exercised for the
four narrative files, including the one from which the
probabilities of occurrence of the characters were derived.

Simulations were run by randomly introducing bit errors at a
rate of 3 per '000 bits. Successive bit errors were :ndependen:

47

C3 C 0 0

Luj

1-

44

-

I -3 LU

C- cu
C) -

CIr
CIc

C

C

C..
o~q.

C. LIJ c

U, 4 J

C-

~m

CD. 4..
I en ~ ~

*W C~- C T

e,

0O 4,0 0' Co~
mr ru cu --

U)

C-)
C-

of one another. No attempt was made to model tne impact ot oursi
errors on the channel. It was felt that should burst errors pose
a problem in the implementation of a particular code, it would
always be possible to superimpose interleaving after data
compression encoding and deinterleaving prior to data compression
decoding.

Figures 16 through 19 present the average numbers of
characters decoded in error per bit error for experiments run
using narrative files I, II, III, and IV, respectively, as a
training file. Each figure presents the results encoded
according to the narrative file for which the decoded character
errors per bit value was obtained.

The first thing to observe is that in all four figures, the
poorest error performance results were obtained when processing
narrative file IV (the most compressible). In contrast, the best
error performance was obtained for narrative file III, which was
the least compressible.

The second thing to notice is that the results obtained
using narrative file IV as a training file gave the best
performance in general in an error channel.

In order to more completely characterize the performance of
Huffman codes in channels with errors, a worst and best case for
each narrative file as a training file from the viewpoint of
average number of characters decoded in error per bit error were
selected for further analysis. Figures 20 through 27 present the
distributions of lengths of successive output characters in error
obtained for the trials given for the selected simulations. Note
that any of the output character error sequencr- may involve more
than one bit error. This is likely for very long sequences of
output character errors and less likely for shorter sequences
because the bit errors were randomly introduced at a rate of 3 in
1000. However, the likelihood of two bit error induced error
sequences merging is very small and can be neglected; therefore,
output character performance is summarized in terms of the
average number of output character errors per bit error.

Some of the distributions had very long sequences of errors
(a maximum of 104 for narrative I as a training file), so that
the distributions are presented for character error sequences of
lengths 1, 2, ... , 9 and those of length 10 or greater. The
maximum length of an error sequence is included in each figure in
the upper right hand corner.

There is a dramatic difference in the structure of the
distributions for each of the narrative files used as a training
file for the Huffman codes found to give the best and worst
performance in a channel with errors. The best distributions
have a preponderance of short length sequences (lengths one, two,
and three) while the worst distributions tend to be relatively
fla:- with the occurrence of extremely long character error

50

CL) CL) CL)C,

4-J 4-) 4- 4-

co m~ cc ro
L_ C_ C_ C

+ 0

0 +* 4-CU

x

o -

I:

+ - Inn-

0) c o -. r cuC

C__C

C)- CL_ L

Lro CUJ
0_ CCL

- C- - C-

C- L L L

+ * 0

o: :+ -

+-

4K0 0

0 + m

CD~ U.: --

CDb L- z
U ro - 4--

4K 0

- I
C- - - -.> > > >

.- .. .- .-r r- r" eO

C_ C_ C_ C_

Z: Z

+ : 0

_cu

Z7

0 +

+ C

' Cr

0 -I-XI-I .-

--

w o

a:

'J 1S I I I I I I .-- :

="m C._ C_

I= 4-1 En C_
D uL LCf _ C._

0 _ C_
UJ rO C_ 4--)C r- Lij -uq
DC--L)r

Izu~

>1 > :> :>

r- c r.I . c -

+ *0

047K

I -W

0+*-

0*-acc -

0 W-U,

Or-

CD c cc to U) m e q

~- C-

'4-1 U) C.

o C) oui

C.) . LU J

LC)-

ccc

'4-

LO__ LgLO- -W - m m cu

cv

-a--

C--

"KT 7

X0
cc

+L

--

- C-
-

LLL

CCo

a.,j

CL)

CD

4--

(C

2

(C
C-

c~.

LO C _

C- C-

Cj

P_ __ _ __ _ r. to t C- V w e u C

__ _ __ _ __)LL

C-
C-

u-.

T

(-O

E

C-

CULL

C..+

(0 >

+ C-

CL)u

U
a
CL)

C-

C)

7

C-

C-

C-

C-* C-

+ (10
C-)

= C>

cu -fz

LO Co n C) M~ 0 LO o n 40 M~ 4 In, 0= C) D
?. " go ID 10 In W IV7 M M CU CU -

C:)

C) _ _

cr) 4-'

C-

C-

en

c nC

C-.

C. C

-40-'

:4n

E-

C-

cC-
C--

LL -

-a-'

4-

W- W- LO O U, w, c') en) M~ M~ -

Ul)

C-

C-

4-I

E-

C.-

aLi-i

Cu -

C-=

C-:

C.)

sequences (35, 104, 65, and 9.11 for 7 arra Ves , "
respectively).

The best performing Huffmar code fount dur7nc ce s :at;
had the distribution presented in t .gure 26 and o-- :frec _.ne
7arrative IV was used as a tra~aing fie. Tn s ST a'u. * . .v
resulted in three output character sequences longer tran
ch.aracters, one each of 9, '2, and 14 characters. .ne averacge
ength of an output sequence of character errors f:r tn s Hoffman

code was 2.4 output character errors.

:- is worthwhile to compare the distribution sncwr, for te
best case in figure 26 with a distribution assoc-anec n.tn toe
worst case shown in figure 2' which occurred for a code wrher
narrative I was used as a training file. This distr.buton is
nearly flat, extending beyond length IC sequences. :ndeec, t.ere
were 22 instances of output character error sequences of .eq-nn
'0 or more in the error simulation for this partu.ar .. fman
code.

Table 13 presents the Huffman code found through simulation
using narrative file IV as a training file and providing the
owest average number of characters decoded in error per blt

error (the code resulting in tne distribution shown in figure
26,.

Finally, we observe that for each narrative file as a
training file and for each narrative file encoded and decoded in
an error channel, there was a significant dependency of the
average number of characters decoded in error per bit error on
the particular Huffman code. There was usually at least a two-
to-one difference in performance depending on the particular
choices of "1"s and ""s in the Huffman construction process.
Recall that the number of bits-per-character depended only weakly
on the narrative file using as a training file and not at all on
the details of the Huffman code chosen. The results presented in
this section show that both decode and output character error
statistics are far more dependent on the construction process and
narrative file statistics than compression results.

Comma-free Codes

In this section we first estimate the impact of errors on
the performance of the different comma-free codes which can be
constructed in two steps by choosing code words of length one. We
then briefly discuss the impact of bit errors on the decoding
errors for more general comma-free codes.

Comma-free Codes Constructed in Two Steps Usinq Lengtn One
Words

The error analysis discussed in this subsection is
accomplished by obtaining the results for the two particular
:odes already discussed in the section describing comma-free
codes. The codes were called the suffix-prefix code and the

63

TABLE 13. HU.FMAN CODE WORDS FOR NARRATIVE FILE IV
WHICH PROVIDED THE BEST PERFORMANCE TN A

CHANNEL WITH ERRORS

CHAR CODE WORD CHAR CODE WORD

01 100010100010
1000 10000000011 A 1110
1111 o o10101 B 0001101

100010100000000100 C 11110
% 100010700000000101 D 000011

100010,00000001 E 110
0010000' F 100011
00100000 G 111110

* 111111'01C01 H 10000
+ 0010101000 1 1010

1111110 J 111111110
10001011 K 001010101
001000i L 000010

/ 111111 1 M 001001

00101011101 N 1001
1 001010110 0 1011
2 0010101111 P 001011
3 1111111011 Q 1000101001
4 001010111000 R 00000
5 100010100011 S 00010
6 0010101110010 T 0011
7 10001010000001 U 000111

8 100010100001 V 0001100
3 001010,110011 W 0010100

100010101100 X 111111100
1111111101000 Y 1000100

< 1000101000000000 z 1000101010

001010,001 100010101101
1000101000001 ~1000101011

64

suffix-suff.x code. After the error analysis nas Deen carried
out for these two codes, it is easy to argue that: (1) the
ana'vsis for the suffix-orefix code apply to all four codes us -r.
either "C" or "I" fi-st and a suffix or prefix first and (2) the
analvs.s for the suffix-suffix code applies to the four codes
using "0" or "1" first and either both suffixes or octh prefixes.

The first step in the analysis of each commna-free code is to
calculate four probabilities:

P(M) = the probability that a bit error leads to the
deletion of a comma between two code words, i.e., to two code
words being merged

P(X2) = the probability that a bit error leads to the
movement of a comma relative to its true position if an error had
not occurred

P(X3) = the probability that a bit error leads to the
addition of a comma relative to those if an error had not
occurred

P(X4) = the probability that a bit error leads to no change
in the placement of the commas

The second step of the error analysis allows us to determine
the impact of the bit errors upon character decoding. In
particular, note the following:

(1) if a bit error leads to comma deletion then two
characters are incorrectly decoded as a single character or not
decodable

(2) if a bit error leads to comma movement then two
characters and incorrectly decoded into two characters

(3) if a bit error leads to the insertion of a comma (always
within the code word with the bit error) then one character will
be incorrectly decoded into two characters

(4) if there is no change in the commas then one character
will be incorrectly decoded into a single character

It follows that the average number of input characters in error
or the average number of output characters in error can be
estimated directly from the probabilities P(Xi), i = I, 2, 3, 4.

Each bit error leads to an error in some character given by
its character probability. For each character the impact of a
nit error, assumed equally likely in each bit of the code word,
,an be calculated depending on the structure of the code word.
To make this precise we introduce the following definitions:

65

p~c) = the probab:Iity of ofccrrence o: c.'ara2e

n~c = the number of bits n tne code word for

= the number of bits n the code word for c lead.nQ *c
the deletion of a comma

n(c2) = the number of bits in the code word for c leading -o
coma movement

n(c3) = the number of bits in the code word for c lean: to
the addition of a comma

n~c4) = the number of bits in the code word for c leadinc to
no change in the comma

Then the probabilities P(Xi), 1 = I, 2, 3, and 4, are calculated
for the suffix-prefix code using the normal cond.tional
probability procedure, namely

P(Xi) = sum over all characters of p(c)n(ci)/n(c) for . =
2, 3, and 4

The required calculations for a particular assignment of the
suffix-prefix code words to a 58-character set are easy but
tedious.

Table 14 summarizes the calculations by character of the
impact of bit errors for the probabilities of occurrence of
characters in narrative file Ii. Similar results are expected
for the remaining three narrative files. The first column
contains the character probab1'ilities of occurrence listed in
descending order and the sezond column contains the comma-free
code word associated to the character whose probability of
occurrence is presented in the first column. Columns 3, 4, 5,
and 6 present n(ci)/n(c), i = 1, 2, 3, and 4, respectively, for
the character whose probability of occurrence is presented.

One observation should be made: the values of n(ci)/n(c)
depend on the fine structure of the code words, and differ for
words of the same length. The table has been constructed by
assigning the code words with the most equal number of "0"s and
"1"s to the highest probability character and the most unbalanced
code words to the lowest probability characters. We illustrate
this by discussing the summarized calculations for the words of
length 8.

There are seven codes word of length 8 available. The two
most unbalanced code words, namely, 01111111 and 00000001 have
different n(ci)/n(c) values from the other six. This occurs
because for these two codes an error in the first and last bit,
respectively, turns the word into all "1"s and all "0"s,
respectively, which lead to the deletion of the comma between the
first and second words and the second and third words,
respectively. Also, these two words only have one transition bit

66

7ABLE '4. PROBABLTES OF ERRCNEJuS COMMA :NSERT:NS OR
DELET:ONS DUE TO BIT ERRORS FOR THE SUFF:X-PREF'IX
COMMA-FREE CODE

PROBAB.ILTY
OF DELETE COMMA ADD NO

OCCURRENCE CODEWORD COMMA MOVES COMMA CHANGE

0 3V' 17 .00 0 0

C0865 0 0.33 0.33 0 0.33
.33 0..33

C'0537 0011 3 0.50 0 0 .50
0. 05i8 0W 0.25 0.25 0.25 3.25
.O5Y 0001 0.25 0.25 0.25 0.25
C.0450 oc1'1 0 0.40 0.20 3.40

0.342 00011 0 0 .40 0 .20 . 40
Z.0391 00001 0.20 0.20 0.40 0.20

C.3263 10000 0.20 0 .20 40 0. 20
S.0232 000111 0 0 .33 0 33 0 .33
2 . 218 000011 0 0.33 0.33 0.33
0206 001111 0 0.33 0.33 0.33

0.0185 011111 0.17 0.17 0.50 0.17
3.0170 100000 0.'7 017 0.50 0.17
0.0162 0000111 0 0.29 0.43 0.28
0.0141 0001111 0 0.29 0.43 0.28
0.3121 0011111 0 0.29 0.43 0.28
001 0000011 0 0.29 0.43 0.28

0.0099 0111111 0.14 0.14 0.57 0.14
0.0082 1000000 0.14 0.14 0.57 0.14
3.0076 00001111 0 0.25 0.5 3.25
3 0058 00000111 0 0.25 0 .5 0 .25
0.0050 11100000 0 0.25 0.5 0.25
0.0039 00111111 0 0.25 0.5 0.25
0.0039 00000011 0 0.25 0.5 3.25
0.0 34 01111111 0.13 0.13 0.63 0.13
0.0024 00000001 0.13 0.13 0,63 0.13
0.0023 00000111' 0 0.22 0.56 3.22
0.0026 00001111 0 0.22 0.56 0 .22
0 .004 0001111' 0 0.22 0.56 0 .22
0 .0013 00000011 0 0. 22 0.56 0 .22
0.0013 00000001 0 0.22 0.56 0.22

0.0011 00111111' 0 0.22 0.56 0.22
0.0010 01111111 " 0.11 0.11 0.67 0.1!

0.0009 000000001 0.11 0.11 0.67 0.1'
0.0008 0000011 1 0 0. 20 0.60 0. 20
.0OOC7 0000 1 111 0 0. 20 0. 60 0. 20

0.0005 0000001111 0 0. 20 0.60 0.20
0.0005 0001111111 0 0.20 0.60 0.20

67

TA3BE '4, PROBABIL T:ES OF ERRONEOUS COMMA :NSERT: NS OR
DELETIONS DUE TO B:T ERRCRS FOR THE S:FF:X-PREF:X
COMMA-FREE CODE (CONT.)

?RCOAB L

OF' DELETE COMMA ADD NC
OCCURRENCE CODEWORD COMMA MOVES COMMA CHANGE

.2003 300000011 0 0.20 0 60
? 30C3 001111111' 0 0.20 0.60

.022 000000001i 0.20 0.60 3.2'.L , 0 20 1 60
>2202 01!111111 0.0 0.10 0.70 . 12
--:-02 0000003001 0.10 0.10 0.70 ,
0022 00C00011' 0 0 98 0 .64 0 IE
.2:JI2 0000 l ,i",I 0 0 .8 0.64 2.8

.2 .0 11111 0 0. 8 0.64 .*8
3022 0"2000011 1 0 0.18 0.64 C,-8

:.ii.2 002'111 0 0918 0.64 2 '8

'3 ' 000000D0011 0 0.18 0.64 0.18
00111111111 0 0918 0.64 098

2.000' 00000000011 0 0.18 0.64 0,1
2.02 0111111111 0.09 0.09 0.73 0.09
0000 00000000001 0.09 0.09 0.73 0.08
.oCO0c 000000111111 0 0.17 0.66 097
.. 0000 000001111111 0 0.17 0.66 0 17

C 002 000000011111 0 0.17 0.66 0.17

68

oDS* ion Whc2 n s not 6:; 1Oc p s 1, dA :: : -".
edge Dit -an oe in error w thoot ohancing any cororas; wn - ,e
a- other words, either of the trans.ztior. b'ts -an oe err
wt ' n.C.t =ang:ng any commas. F.nallv, these two, coce rs ave
:ve :nter-:r positions withn a strinc of s or . s
ke ,ther words on.v nave four; errors -n tnese z.: -ost . :.s
_ead tc an. additonal conna within the word w!tn Ine c t er.

For the assignment of suffix-prefix codes to --arac-ers
descriDed above and summarized by table 11, the :oiow-nc
statistics were obtained:

P X2 = .

P X3 = 6

PX4 =

Note that about three-quarters of the contribution to P(X,,"
that provided by the code word "01" assigned to the blank
cnaracter with probability of occurrence 0.317124.

The average number of coded characters decoded in error per
St error is g:ven by

(.42)(2) - (.21)(2) - (.16)(1) - (.21)(1) = 1.63

-he average number of output characters which are incorrect per
bt error is given by

.42)(I) - (.21) (2) + (.16)(2) + (.21)(1) = 1.37.

These values are obtained by treating words too long to be
decoced because they exceed the longest word assigned one of the
5 zharacters as being incorrectly decoded. (Such characters
<ould be decoded into a 59-th character indicating an error has
occurred.) To distinguish these cases from the cases when the
erroneous words arising through misplacement of commas can be
decoded into one of the 58 characters to which code words have
oeen assigned would require more delicate arguments depending on
the lengths and structure of the code words for the characters
preceding and following the one in error.

The calculations presented clearly indicate that the
performance of the prefix-suffix code in an error channel is
considerably better than the performance of any Huffman code that
we :ound, so tnat these more delicate calculations are not
necessary. And, this improved performance was obtained by paying
an insignificant penalty in compression (or equivalently,
thruput).

A two step comma-free code construction using a one-bit
prefix and a one-bit suffix, no matter what choices are made

69

- coes (an oe obtained r07. .e.
a : " s. f t hs were aocne t-e ass

Se same D na b .i -i es n 1 r.,
".e. e "-c rC ass:gnment before *'e _ er ra ..
ore x su;tf.x odes using a on P-I * pre!x a - a e
._ i , ese assignments hae a e same e ss.

e t ur< now to estimat:% tn.e _mza- if err:: -
s. .: -s tf,; x :ode _,scussed ear. er. Rea_ :ia ,.

*~ -n~ oc o~ nave ti~e structure 02 '... a" .eas t r

.oa. rde differs froa, the s':.ix-o ref.x :c:e - , a t. -
a- error :n the first pos.tion of a coce icrc t e:-

i.e e 'circ 'i t e Drev c s coe wcrd.

We re - - ,e i e f'-s, n: a-,. 7e s e ,' e

t7e -ext -w para A' Sr s ar(t rr :o!, e e ne a 's.s . t..-
f - r H,>e'.r i ~e ass~g-me' : i:f coce wc-: -ar ers as

-- " *e . .r'.e % s 'ne oas s fcr a-

-e i- .v rarrv o -t "e 7a cr at ions for "rhe e"s D
_rre.o:e cf tne chdracters in narrative f"e SI:dr

res. -s would oe obtained for the probai-:t- es of oc-.rren:e
t7e :raracters :n trhe other three ndrrat~ve fiIes.

able '5 sunmar izes the i mpact of errors from the t, ,:rdb, b: t
.,ro gn the erd of a word. These errors either ead tc the

auo.dd or of a comrur.a, or no change in. the commas, depending on
w.etner or rot the bit error charges a to a a
s -- r, q of "^"s and whether or no, an error changes a "" to a

a str ng, of "0 s. We now trn o evaua .c e : are of
errors :r. tre firs two bts

A: errcr ir the first but leads to Ihe movemen of a romr'a
-ne deletion of a comma depending on whether tr.e f :s, coce

'ord ends in "0" (3.5' from tab.e 5 or ends in. 9
.erefore,

the probability that a bit error in the firs- . i. :eads
to the moveer,t of a comma is given by:

probarllity that a code word ends r, "-" son over
zraracters cf p(c)/n(c) = .) .3 =

2) the probability tnat a bit error :n ,ne f-rs it .eais
the deletion of a comma is given by:

prooabit t y that a code word ends n ' snm ove:
craracters of p(c)!n(c)) = (0.49)(.31 = 52

An error in the second bit leads to the deletio of a -ormra
or the addition of a comma, dependIng on whether or rot the

TABLE - . PROBABLT ES OF ERRQNEOUS COMMA :NSE...:ONS
DUE TO B'T ERRORS FOR THESFFZX-SUFF:X
CO MmA-FREE CODE

?RBAB:L:TY
r ADD NO

DCC'-RRENCE CODEWORD COMMA CHANGE

" 3
" "

-C C
>086 00 0.33

- .33
C53-' CC 0.25 0.25

5:10 0.25 0.50
o .:5' 0.25 0.25

-0CC 0.40 0.20

.420 430 0.20 0.40
3 39 0.20 0.40
0263 C i0.40 0.20

0.0232 010000 0.50 0.17
3.0213 O1000 0.33 0.33
'.C206 011100 0.33 0.33
085 011110 0. 33 0.33

I.017C 011111 0.50 0.17
.C, 62 0100000 057 0. 14

C.0141 0110000 0.43 0.28
0 .012' 0111000 0.43 0.28
0.0101 0111100 0.43 0.28
0.0099 0111110 0.43 0.28
0.0082 0111111 0.57 0.14
0.0076 01000000 0.62 0.13
0.0058 01100000 0.5 0.25
0.005C0 01110000 0.5 0.25
0.0039 01111000 0.5 0.25
0.0039 01111100 0.5 0.25
0.0034 01111110 0.5 0.25
0.0024 01111111 0.63 0.13
0.0023 010000000 0.67 0.11
0.0016 011000000 0.55 0.22
0.0014 011100000 0.55 0.22
0.0013 011110000 0.55 0.22
0.0013 011111000 0. 55 0. 22
0.0017 011111100 0.55 0.22
C.001i 011111110 0.55 0.22
0.0009 0111,1111 0.67 0.11
0.0008 0100000000 0.70 0.10
0.0007 0110000000 0.60 0.20
0.0005 0111000000 0.60 0.20
0.0005 0111100000 0.60 0.20
0.0003 0111110000 0.60 0.20
I.0003 0111111000 0.60 0.20
0.0002 0111111100 0.60 0.20

71

TABLE 15. PROBABILITIES OF ERRONEOUS COMMA INSERTIONS
DUE TO BIT ERRORS FOR THE SUFFIX-SUFFIX
COMMA-FREE CODE (CONT.1

PROBABILITY
OF ADD NO

OCCURRENCE CODEWORD COMMA CHANGE

0.0002 0111111110 0.60 0.20
0.0002 0111111111 0.70 0.10
0.0002 01000000000 0.73 0.09
0.0002 01100000000 0.64 0.18
0.0002 01110000000 0.64 0.18
0.0002 01111000000 0.64 0.18
0.0002 01111100000 0.64 0.18
0.0001 01111110000 0.64 0.18
0.0001 01111111000 0.64 0.18
0.0001 01111111100 0.64 0.18
0.0001 01111111110 0.64 0.18
C.0000 01111111111 0.73 0.09
C.0000 010000000000 0.75 0.08
0.0000 011000000000 0.67 0.17
C.0000 011100000000 0.67 0.17

72

second bit in error was the only "1" in the code word.
Therefore,

(1) the probability that a bit error in the second bit leads
to the deletion of a comma is given by:

p(2/2+ p(3)/3 + .. + p(12)/12

(0.3171) (1/2)
" (0.0865)(1/3)
" (0.0537)(1/4)
" (0.0450)(1/5)
+ (0.0232)(1/6)
" (0.0162)(1/7)
" (0.0076)(1/8)
" (0.0023)(1/9)
" (0.0008)(1/10)
" (0.0002)(1/11)
" (0.0000)(1/12)

= 0.197 [rounded to three places]

whiere p(2), p(3), .. ,p(12) are the probabilities of occurrence
of the character which has been assigned a word of length two
with a single "1", a word of length three with a single "1",

a word of length twelve with a single "1", respectively
(see table 15).

(2) the probability that a bit in the second bit leads to
the addition of a comma is given by:

(sum over characters of p(c)/n(c)) -

[()2+ p(3)/3 +.+ p(12)/12 3
=

.312 - .197 = .115

where p(2), p(3), ... , p(12) are as above.

The probability that a bit error leads to the addition of a
comma through changing other than the first or second bit is .18
from summing the data presented in column 3 of table 15. The
probability that a bit error leads to no change in the commas
through changing other than the first or second bit is .20 from
summing the data presented in column 4 o~f table 15.

For the assignment of suffix-suffix codes to characters
described above and summarized by table 15, the following summary
statistics follow from combining the estimates which have been
obtained:

P(X1) = .35

P(X2) = .16

73

P(X3) =.29

P(X4 = .20

Note that about three-quarters of the contribution to P(X1) is
that provided by the code word "01" assigned to the blank
character with probability of occurrence 0.317124.

The average number of coded characters decoded in error per
bit error is given by

(.35)(2) +(.16)(2) +(.29)(1) +(.20)(1) = 1.51

The average number of output characters which are incorrect per
bit error is given by

(.35)(1) +(.16)(2) +(.29)(2) +(.20)(1) - 1.45.

The statistics developed for the particular suffix-suffix
code applies to the other suffix-suffix code and to both pref ix-
prefix codes. Observe that if "0" is chosen as a suffix first
and then "1", the code words have the structure

10 ... 01 ... 1 with at least one "0" and always starting with
"1"

This code is obtained from the one analyzed by interchanging the
roles of "0" and "1" so it will have the same statistics as the
code analyzed, provided that the code words assigned to the
characters are those obtained by interchanging "0"s and "1"s in
the assignment made previously. Observe that if "1" is chosen as
a prefix, and "0" as a prefix, the code words have the
structure:

0 ... 01 ... 10 with at least one "1" and always ending with "0"

These code words are simply the mirror images of the words in the
suffix-suffix code analyzed. Assign these code words to
characters by taking mirror code words to those assigned for the
suffix-suffix code. Then, the first position analysis, which
depended on the ending of the prior word, applies to the last bit
of the prefix-prefix code and the beginning of the next code word
ending in "0" or "1". The second bit analysis applies to the
second to last bit. The analyses conducted before clearly apply
to the remaining bits. It follows the statistics will be the
same for this prefix-prefix code.

The remaining prefix-prefix code is obtained from the one just
discussed by interchanging "'1"s and "0"s; therefore, it will also
have the same statistics, provided (once again) that the
assignment of code words to characters is obtained by
interchanging "1"s and "0"s in the above assignment.

74

Comma-free Codes Constructed Using Other Than Length One Words

The results presented in the last section were for the two
simplest kinds of comma-free codes. In this section, it is shown.
that more complicated phenomena can occur leading to more than
two character decoding errors as a result of a single bit error.
The results indicate that as the number of steps in the comma-
free code construction process increases without limit the number
of character decoding errors probably increase without limit.
However, we have not succeeded in exhibiting this for a sequence
of comma-free codes involving the use of longer and longer
construction processes.

Some additional terminology is needed to facilitate the
discussion of general comma-free codes. Let

k denote the kernel of the code under construction

p(i) , i = 1, 2, .. denote the prefixes used in the code
under construction

s(j), j = 1, 2, .. denote the suffixes used in the code

under construction

The most general comma-free codes have not been discussed in
this manuscript and have not been analyzed in this study. We
impose the following additional conditions on the codes under
discussion:

(1) k ="0" or "in

(2) both "0" and "I" are used as either prefixes or suffixes

(3) the length of the prefix or suffix used in k-th
construction step is less than or equal to the length of the
prefix or suffix used in the (k+l)-th construction step. (These
restrictions may not be necessary for carrying out an error
analysis similar to that presented, but they are convenient and
probably do not exclude any codes that are of interest for data
compression.)

The results presented in the last section can be generalized
to an important family of comma-free codes, which we call
exhaustive codes. A comma-free code is called exhaustive if for
each of the steps in the code construction process the code word
chosen as either a prefix or suffix is the shortest code word
possible. For exair'ple, referring to tables 7,8,9, and 10, the
codes (1,1), (1.1,2), (1,1,2,3), and (1,1,2,3,3) are exhaustive
and the codes (,1,3), (1,1,3,3), (1,1,2,4), and (1,4A) are non-
exhaust ive codes.

Foe an exhaustive comma-free code, a single bit error can
!.ead to at most two characters decoded in error. For non-
exhaustive comma-free codes, it may happen that a single bit
error leads to more than two characters decoded in error. To

75

establish this result, consider (1) an incoming sequence of bits
as a sequence of kernels, prefixes, and suffixes, and (2) the
comma-insertion algorithm (after the first step) as deleting
commas between the kernels, prefixes, and suffixes. Now, let us
discuss the potential impact of a single bit error occurring in a
kernel or in a prefix or suffix of the code words. in
particular, we wish to discuss how a error can impact the comma
deletion process between two words which are error free.

Let us denote the word with a bit error by use of ""

Consider, the incoming sequence of binary bits parsed into
codewords as follows:

w(1 w(2)w-(3)w(4)w(5).

Under what conditions will the comma separating w(l) and w(2) or
the comma between w(4) and w(5) be altered as a result of a bit
error somewhere in the codeword w(3)? Each of these words is
constructed from the kernel and prefixes and suffixes, as
described above.

For the comma between w(l) and w(2) to be erased by the
comma-insertion algorithm, the prefix or kernel beginning w(2)
must be transformed into a suffix through a bit error in w(3).
Since none of bits in w(2) are in error, this can only happen if
the addition of bits to the bits of w(2) has created a suffix
used in the construction process; i.e., there exists a code word
of shorter length in the code than some suffix in the code. This
means the comma-free code is non-exhaustive.

For the comma between w(4) and w(5) to be erased by the
comma-insertion algorithm, the suffix or kernel ending w(4) must
be transformed into a prefix through a bit error in w(3). Since
none of the bits in w(4) are in error, this can only happen if
the addition of bits to the bits of w(2) has created a prefix
used ir the construction process; i.e., there exists a code word
of shorter length in the code than some prefix in the code. This
meens the comma-free code is non-exhaustive.

it is clear that one could improve upon the results by
examining the non-exhaustive codes to see if either of the above
phenomena can occur for a particular selection of prefixes or
suffixes. This is relatively straightforward for any family of
codes constructed using mostly short length prefixes and suffixes
and no more than six construction steps. This is because the
analysis is carried out by examining only those code words less
than the longest suffix or prefix used in the construction. we
illustrate this by considering the suffix-prefix codes of the
form (1,1,3).

For kern~el "0", suffix "1", prefix "0", there would be two
three letter code words available, namely "001" and "011", to be
selected as either a suffix or prefix. The only length two code
words are "00" and "01". Note if "011" is chosen as a prefix,
there is no one bit which can be combined with "00" or "01" from

76

the left to create it; if instead "001" is cnosen. as a prefix
could be combined with "01" to obtain it. However, under trie
same conditions if "011" is chosen as a suffix, then a one-bit
"addition" to "01" on the right leads to the chosen suffix;if
instead "001" is chosen as a suffix then again a one-bit
"addition" to "00" on the right leads to the chosen suffix.
Thus, for three of the four constructions considered, one bit
error could lead to three characters decoded in, error. Note,
that for these codes, there has to be a very special combination
of words and very particular bit errors to lead to more than two
character decoding errors as a result of a singl.e bit error.

if we consider when a single bit error could lead to four
character decoding errors, similar reasoning to that presented
above would lead to the necessity that two code words of length 2
plus one or more bits would need to be a suffix or prefix; i.e.,
the code would need to involve a suffix or prefix of length 5 or
more. Hence, for the four non-exhaustive codes discussed in this
section, namely (1 ,1 ,3) , (1 ,1 ,3,3) , (1, 1,2,4), and (1 ,1 ,4) , a
single bit error can never lead to four or more character
decoding errors.

SUMMARY

The present code consists of a parity bit, 5 information
bits, and a stop bit. our discussion of generalized Baudot codes
suggested that a code using 4 information bits could replace the
5 information bit code now being used. we suggest a parity bit,
4 information bits, and 1/2 bit for stops (i.e., a stop bit for
every 8 information bits). The number of bits for the new code
is given by:

4.5 + (4.5/4)(1.5) = 6.2 bits-per-character

The data compression provided by this code would be

7/6.2 = 1.13

The more complicated encoding and decoding associated with
comma-free codes does promise some additional compression.
However, a mechanism to allow receiver synchronization in the
absence of stop bits needs to be identified, and the
incorporation of error correction codes requires care. Note, one
cannot just add parity bits operating on code words, because in
their presence the comma insertion algorithm would break down.
Error correction information must be carried by comma-free code
words. We suggest that it be incorporated into the encoding of
the end-of-line character. one would map the error correction
information into a set of long code words which could provide
correction for the line and end-of-line indication by its
presence.

It is always possible to superimpose an error correction code
on the serial bit sequence before transmission and then utilize
it for error correction before beginning the comma-free decoding

77

process which begins with the comma-insertion algorithm.

If error detection and correction bits were kept to the same
ratio of information bits to non-information bits as the code
discussed above, we would need

4 + 1.5 = 5.5 bits-per-character

This would translate into a data compression ratio of

7/5.5 = 1.37

This compression ratio is probably the best that could be
accomplished using comma-free codes and character encoding based
on probabilities of occurrence of the characters.

More powerful encoding techniques would use conditional
probability of occurrences of characters. The suggested approach
would be to create a table of comma-free code words for
characters depending on the previously transmitted one or two
-haracters. The encoding process would be reinitialized with the
beginning of each word. As a further aid to the identification
of the beginnings of words, it might prove desirable to always
encode spaces in the same way by reserving some particular code
word for spaces. It is recommended that the use of conditional
probabilities of character occurrence rather than probabilities
of occurrence and the appropriate error detection and correction
coding for use with the compression code be analyzed in a follow-
on effort. Such an approach promises considerable additional
compression over that shown for any of the cases investigated in
this report.

78

LIST OF REFERENCES

Huffman, D., "A Method for the Construction of Minimum
Redundancy Codes", Proceedings of the Institute of Radio
Engineers, Vol. 40, pp. 1098-1101, September 1952.

2. Scholtz, R., "Codes with Synchronization Capability",
IEEE Transactions on Information Theory, Vol. IT-12,
No. 2, April 1966.

3. Scholtz, R., "Maximal and Variable Word-Length Comma-Free
Codes", IEEE Transactions on Information Theory,
Vol. IT-15, No. 2, March 1969.

79

IEIYEI

17 LrilE[l ooj-

